Paul Sharon J, Sharma Indu, Elizabeth Indu, Gahtori Bhaskar, M Manikandan R, Titus S Seelakumar, Chandra Prakash, Gupta Bipin Kumar
Department of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi, Uttar Pradesh 284128, India.
Photonic Materials Metrology Sub Division Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012, India.
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16946-16958. doi: 10.1021/acsami.0c01779. Epub 2020 Mar 26.
In the present scenario, conducting and lightweight flexible polymer nanocomposites rival metallic and inorganic semiconducting materials as highly sensitive piezoresistive force sensors. Herein, we explore the feasibility of vertically aligned carbon nanotube (VACNT) nanocomposites impregnated in different polymer matrixes, envisioned as highly efficient piezoresistors in sensor applications. Polymer nanocomposites are selectively designed and fabricated using three different polymer matrixes, i.e., polydimethylsiloxane (PDMS), polyurethane (PU), and epoxy resins with ideal reinforcement of VACNTs to enhance the thermal stability, conductivity, compressibility, piezoresistivity, and sensitivity of these nanocomposites. To predict the best piezoresistive force sensor, we evaluated the structural, optical, thermal, electrical, mechanical, and piezoresistive properties of the nanocomposites using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), - measurements, compressive stress-strain measurements, hysteresis, sensitivity, and force studies. The results demonstrate that the PDMS/VACNT nanocomposite is capable of sustaining large force with almost complete recovery and enhanced sensitivity, thereby fulfilling the desirable need for a highly efficient conductive and flexible force sensor as compared to PU/VACNT and epoxy/VACNT nanocomposites.
在当前情况下,导电且轻质的柔性聚合物纳米复合材料可与金属和无机半导体材料相媲美,成为高灵敏度压阻式力传感器。在此,我们探索了浸渍在不同聚合物基体中的垂直排列碳纳米管(VACNT)纳米复合材料作为传感器应用中高效压阻器的可行性。使用三种不同的聚合物基体,即聚二甲基硅氧烷(PDMS)、聚氨酯(PU)和环氧树脂,对聚合物纳米复合材料进行选择性设计和制备,并通过VACNTs进行理想的增强,以提高这些纳米复合材料的热稳定性、导电性、可压缩性、压阻率和灵敏度。为了预测最佳的压阻式力传感器,我们使用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、拉曼光谱、热重分析(TGA)、测量、压缩应力-应变测量、滞后、灵敏度和力研究等方法,对纳米复合材料的结构、光学、热、电、机械和压阻性能进行了评估。结果表明,与PU/VACNT和环氧树脂/VACNT纳米复合材料相比,PDMS/VACNT纳米复合材料能够承受较大的力,几乎完全恢复且灵敏度增强,从而满足了对高效导电且柔性力传感器的理想需求。