Suppr超能文献

机器学习驱动的大规模模拟分析揭示泛素链的构象特征。

Machine Learning Driven Analysis of Large Scale Simulations Reveals Conformational Characteristics of Ubiquitin Chains.

机构信息

Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany.

Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany.

出版信息

J Chem Theory Comput. 2020 May 12;16(5):3205-3220. doi: 10.1021/acs.jctc.0c00045. Epub 2020 Apr 7.

Abstract

Understanding the conformational characteristics of protein complexes in solution is crucial for a deeper insight in their biological function. Molecular dynamics simulations performed on high performance computing plants and with modern simulation techniques can be used to obtain large data sets that contain conformational and thermodynamic information about biomolecular systems. While this can in principle give a detailed picture of protein-protein interactions in solution and therefore complement experimental data, it also raises the challenge of processing exceedingly large high-dimensional data sets with several million samples. Here we present a novel method for the characterization of protein-protein interactions, which combines a neural network based dimensionality reduction technique to obtain a two-dimensional representation of the conformational space with a density based clustering algorithm for state detection and a metric which assesses the (dis)similarity between different conformational spaces. This method is highly scalable and therefore makes the analysis of massive data sets computationally tractable. We demonstrate the power of this approach to large scale data analysis by characterizing highly dynamic conformational phase spaces of differently linked ubiquitin (Ub) oligomers from coarse-grained simulations. We are able to extract a protein-protein interaction model for two unlinked Ub proteins which is then used to determine how the Ub-Ub interaction pattern is altered in Ub oligomers by the introduction of a covalent linkage. We find that the Ub chain conformational ensemble depends highly on the linkage type and for some cases also on the Ub chain length. By this, we obtain insight into the conformational characteristics of different Ub chains and how this may contribute to linkage type and chain length specific recognition.

摘要

了解溶液中蛋白质复合物的构象特征对于深入了解其生物学功能至关重要。在高性能计算设备上使用现代模拟技术进行分子动力学模拟,可以获得包含生物分子系统构象和热力学信息的大型数据集。虽然这原则上可以提供溶液中蛋白质-蛋白质相互作用的详细图像,并因此补充实验数据,但也提出了处理具有数百万个样本的极其庞大的高维数据集的挑战。在这里,我们提出了一种新的蛋白质-蛋白质相互作用表征方法,该方法结合了基于神经网络的降维技术,以获得构象空间的二维表示,以及基于密度的聚类算法用于状态检测和评估不同构象空间之间(不)相似性的度量。该方法具有高度可扩展性,因此使大规模数据集的分析在计算上变得可行。我们通过对粗粒度模拟的不同连接的泛素(Ub)低聚物的高度动态构象相空间进行特征描述,展示了这种方法对大规模数据分析的强大功能。我们能够提取出两个未连接的 Ub 蛋白的蛋白质-蛋白质相互作用模型,然后使用该模型确定在 Ub 低聚物中引入共价键如何改变 Ub-Ub 相互作用模式。我们发现,Ub 链构象集合高度依赖于连接类型,并且在某些情况下还依赖于 Ub 链长。通过这种方式,我们深入了解了不同 Ub 链的构象特征,以及这如何有助于连接类型和链长特异性识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验