Suppr超能文献

加强因果模型,以更好地实现人类福祉的保护成果。

Strengthen causal models for better conservation outcomes for human well-being.

机构信息

National Center for Ecological Analysis and Synthesis, University of California-Santa Barbara, Santa Barbara, CA, United States of America.

Center for Biodiversity and Conservation, American Museum of Natural History, New York, CA, United States of America.

出版信息

PLoS One. 2020 Mar 20;15(3):e0230495. doi: 10.1371/journal.pone.0230495. eCollection 2020.

Abstract

BACKGROUND

Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models are useful tools for defining plausible pathways from conservation actions to impacts on nature and people. Evaluating the potential of different strategies for delivering co-benefits for nature and people will require the use and testing of clear causal models that explicitly define the logic and assumptions behind cause and effect relationships.

OBJECTIVES AND METHODS

In this study, we outline criteria for credible causal models and systematically evaluated their use in a broad base of literature (~1,000 peer-reviewed and grey literature articles from a published systematic evidence map) on links between nature-based conservation actions and human well-being impacts.

RESULTS

Out of 1,027 publications identified, only ~20% of articles used any type of causal models to guide their work, and only 14 total articles fulfilled all criteria for credibility. Articles rarely tested the validity of models with empirical data.

IMPLICATIONS

Not using causal models risks poorly defined strategies, misunderstanding of potential mechanisms for affecting change, inefficient use of resources, and focusing on implausible efforts for achieving sustainability.

摘要

背景

理解自然保护如何能导致人类状况的改善,是一个研究领域,具有显著的增长和关注。朝着有效的保护进展需要理解在复杂的社会-生态系统中实现影响的机制。因果模型是用于定义从保护行动到对自然和人类产生影响的合理途径的有用工具。评估为自然和人类提供共同利益的不同策略的潜力,将需要使用和测试明确因果模型,这些模型明确定义了因果关系背后的逻辑和假设。

目的和方法

在这项研究中,我们概述了可信因果模型的标准,并系统地评估了它们在一个广泛的基础上的文献中的使用情况(来自已发表的系统证据图的约 1000 篇同行评议和灰色文献文章),这些文献涉及自然保护行动与人类福祉影响之间的联系。

结果

在确定的 1027 篇出版物中,只有约 20%的文章使用任何类型的因果模型来指导他们的工作,只有 14 篇文章完全符合可信度的标准。文章很少用经验数据来检验模型的有效性。

影响

不使用因果模型会带来风险,例如策略定义不明确、对潜在影响机制的误解、资源使用效率低下,以及专注于实现可持续性的不切实际的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bdf/7083336/196b26ac29d8/pone.0230495.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验