Suta Markus, Antić Željka, Ðorđević Vesna, Kuzman Sanja, Dramićanin Miroslav D, Meijerink Andries
Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia.
Nanomaterials (Basel). 2020 Mar 18;10(3):543. doi: 10.3390/nano10030543.
Ratiometric luminescence thermometry employing luminescence within the biological transparency windows provides high potential for biothermal imaging. Nd is a promising candidate for that purpose due to its intense radiative transitions within biological windows (BWs) I and II and the simultaneous efficient excitability within BW I. This makes Nd almost unique among all lanthanides. Typically, emission from the two crystal field levels is used for thermometry but the small ~100 cm energy separation limits the sensitivity. A higher sensitivity for physiological temperatures is possible using the luminescence intensity ratio (LIR) of the emissive transitions from the and excited spin-orbit levels. Herein, we demonstrate and discuss various pitfalls that can occur in Boltzmann thermometry if this particular LIR is used for physiological temperature sensing. Both microcrystalline, dilute (0.1%) Nd-doped LaPO and LaPO: % Nd ( = 2, 5, 10, 25, 100) nanocrystals serve as an illustrative example. Besides structural and optical characterization of those luminescent thermometers, the impact and consequences of the Nd concentration on their luminescence and performance as Boltzmann-based thermometers are analyzed. For low Nd concentrations, Boltzmann equilibrium starts just around 300 K. At higher Nd concentrations, cross-relaxation processes enhance the decay rates of the and levels making the decay faster than the equilibration rates between the levels. It is shown that the onset of the useful temperature sensing range shifts to higher temperatures, even above ~ 450 K for Nd concentrations over 5%. A microscopic explanation for pitfalls in Boltzmann thermometry with Nd is finally given and guidelines for the usability of this lanthanide ion in the field of physiological temperature sensing are elaborated. Insight in competition between thermal coupling through non-radiative transitions and population decay through cross-relaxation of the and spin-orbit levels of Nd makes it possible to tailor the thermometric performance of Nd to enable physiological temperature sensing.
利用生物透明窗口内的发光进行比率发光测温为生物热成像提供了巨大潜力。由于钕(Nd)在生物窗口I和II内有强烈的辐射跃迁,且在窗口I内同时具有高效的激发性,因此它是实现这一目的的有前途的候选材料。这使得Nd在所有镧系元素中几乎独一无二。通常,来自两个晶体场能级的发射用于测温,但约100 cm的小能量间隔限制了灵敏度。利用来自 和 激发自旋 - 轨道能级的发射跃迁的发光强度比(LIR),可以实现对生理温度更高的灵敏度。在此,我们展示并讨论了如果将这种特定的LIR用于生理温度传感时,玻尔兹曼测温法中可能出现的各种陷阱。微晶、稀(0.1%)Nd掺杂的LaPO 和LaPO: % Nd( = 2、5、10、25、100)纳米晶体作为一个示例。除了对这些发光温度计进行结构和光学表征外,还分析了Nd浓度对其发光以及作为基于玻尔兹曼的温度计的性能的影响和后果。对于低Nd浓度,玻尔兹曼平衡在约300 K附近开始。在较高Nd浓度下,交叉弛豫过程提高了 和 能级的衰减速率,使得衰减比能级之间的平衡速率更快。结果表明,有用温度传感范围的起始点向更高温度移动,对于Nd浓度超过5%的情况,甚至高于约450 K。最后给出了Nd在玻尔兹曼测温法中陷阱的微观解释,并阐述了该镧系离子在生理温度传感领域可用性的指导原则。对通过非辐射跃迁的热耦合与Nd的 和 自旋 - 轨道能级的交叉弛豫导致的粒子数衰减之间竞争的深入了解,使得调整Nd的测温性能以实现生理温度传感成为可能。