Suppr超能文献

虚拟现实中无需合作的独立 OKN 基础低视力对比敏感度估计 - 一项初步研究。

Standalone cooperation-free OKN-based low vision contrast sensitivity estimation in VR - a pilot study.

机构信息

Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany.

Carl Zeiss Vision International GmbH, Aalen, Germany.

出版信息

Restor Neurol Neurosci. 2020;38(2):119-129. doi: 10.3233/RNN-190937.

Abstract

BACKGROUND

In low vision patients, the assessment of contrast sensitivity is an essential tool to determine the stage of visual impairment. However, traditional contrast sensitivity tests rely on verbal feedback, and the expertise of the examiner.

OBJECTIVE

In the current study, a fast, OKN-based virtual diagnosis tool was developed estimating contrast sensitivity automatically without active cooperation of the patient as well as the practitioner within 3.5 minutes.

METHODS

In a HTC Vive headset with an SMI-eye tracker, a virtual rotating drum was implemented, and an algorithm was developed, evaluating the occurrence of an OKN. The tool was evaluated in healthy subjects as well as under low vision simulation for two spatial frequencies and four contrasts. It was then compared to two contrast sensitivity estimates based on manual report on the orientation of static gratings as well as the movement direction of translating gratings.

RESULTS

An algorithm was developed, which matched ground truth ratings of occurrence of OKN with an accuracy of 88 %. Furthermore, known differences in contrast sensitivity between healthy and low vision conditions as well as a decrease in contrast sensitivity for lower spatial frequencies was successfully reproduced in the developed tool.

CONCLUSIONS

The developed OKN-based sensitivity test represents a reliable proof of concept for technology readiness of virtual reality-based screening tools of visual function in practice, specifically in patients with difficulties to report perception verbally, or under conditions, where no experienced examiner is present.

摘要

背景

在低视力患者中,评估对比敏感度是确定视觉损伤阶段的重要工具。然而,传统的对比敏感度测试依赖于口头反馈和检查者的专业知识。

目的

在当前的研究中,开发了一种快速的、基于 OKN 的虚拟诊断工具,可以在 3.5 分钟内自动估计对比敏感度,无需患者和医生的主动配合。

方法

在 HTC Vive 头戴式设备和 SMI 眼动追踪器中,实现了一个虚拟旋转鼓,并开发了一种算法,用于评估 OKN 的发生。该工具在健康受试者以及低视力模拟条件下对两个空间频率和四个对比度进行了评估。然后将其与基于手动报告静态光栅方向和翻译光栅运动方向的两种对比敏感度估计进行了比较。

结果

开发了一种算法,其对 OKN 发生的准确度为 88%,与真实情况相匹配。此外,该工具成功再现了健康和低视力条件下对比敏感度的已知差异,以及较低空间频率下对比敏感度的下降。

结论

基于 OKN 的敏感性测试代表了虚拟现实为基础的视觉功能筛查工具在实践中技术就绪状态的可靠概念验证,特别是在那些难以口头报告感知或在没有经验丰富的检查者在场的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验