Biological Research Centre, Szeged, Hungary; ELI-ALPS, ELI Nonprofit Ltd., Szeged, Hungary.
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
Biochim Biophys Acta Bioenerg. 2020 Jul 1;1861(7):148191. doi: 10.1016/j.bbabio.2020.148191. Epub 2020 Mar 20.
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.
从海洋绿藻泡叶藻中分离的捕光复合物 II(LHCII)的光谱特性有助于了解适应潮间带环境所导致的结构和功能变化。LHCII 与其在陆地植物中的对应物同源,但类胡萝卜素和叶绿素(Chl)组成不同。这反映在稳态吸收、荧光、线二色性、圆二色性和各向异性圆二色性光谱中。使用时间分辨荧光和二维电子光谱研究了这种色素组成适应性变化对激发态动力学的影响。该复合物包含额外的 Chl b 光谱形式 - 在大约 650nm 和 658nm 处吸收 - 并且与高等植物 LHCII 相比缺乏最红的 Chl a 形式。与植物 LHCII 相似,Chls 之间的能量转移发生在从小于一百飞秒(主要是从 Chl b 到 Chl a)到几皮秒(主要是在 Chl a 池之间)的时间尺度上。然而,长寿命、弱耦合的 Chl b 和 Chl a 态的存在导致来自泡叶藻的 LHCII 中激子平衡速度较慢。这一发现表明,在增强对蓝绿光的吸收和激发迁移时间之间存在权衡。然而,适应性变化不会导致光合作用系统 II 的整体光化学效率显著下降。这些结果表明,LHCII 是一个稳健的适应性系统,其光谱特性可以根据环境进行调整,以实现最佳的光捕获。