形成呼吸超级复合物的动力学优势。
Kinetic advantage of forming respiratory supercomplexes.
机构信息
Department of Chemistry, University of California-Davis, Davis, CA 95616, USA.
Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
出版信息
Biochim Biophys Acta Bioenerg. 2020 Jul 1;1861(7):148193. doi: 10.1016/j.bbabio.2020.148193. Epub 2020 Mar 19.
Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.
线粒体和一些需氧细菌中的呼吸链组件组装成更大的、多蛋白膜结合超复合物。在这里,我们研究了由呼吸链复合物 III 和 IV 组成的超复合物的功能意义。复合物 III 催化醌的氧化和水溶性细胞色素 c(cyt c)的还原,而复合物 IV 催化还原的 cyt c 的氧化和二氧化氧还原为水。我们关注两个问题:(i) 在什么条件下 cyt c 的扩散成为这两个复合物之间电子转移的限速步骤?(ii) 形成由复合物 III 和 IV 组成的超复合物是否具有动力学优势?为了回答这些问题,我们使用了一种理论方法,并假设 cyt c 在水相扩散,而复合物 III 和 IV 要么在膜的两个维度上独立扩散,要么形成超复合物。分析表明,复合物 III 和 IV 之间的电子通量取决于跨膜空间体积内 cyt c 的平衡时间,而不是 cyt c 扩散时间常数。假设膜结合成分和 cyt c 的相对浓度是现实的,并且所有成分都独立扩散,数据表明复合物 III 和 IV 之间的电子转移可能成为限速步骤。因此,将复合物 III 和 IV 聚集在膜中形成超复合物具有动力学优势。