Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
Molecular Medicine program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2021157118.
Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) In and some other organisms, these complexes assemble into larger CIIICIV supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the supercomplex cyt. -mediated QH:O oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. show the positively charged cyt. bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. must diffuse in three dimensions, formation of the CIIICIV supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. This mechanism enables the CIIICIV supercomplex to increase QH:O oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.
在需氧生物中,能量转换涉及电子流从 NADH 和琥珀酸等低势能供体到通过膜结合呼吸链的分子氧。电子传递与跨膜质子转运偶联,后者维持用于产生 ATP 和驱动其他细胞过程的电化学质子梯度。电子从呼吸复合物 III(CIII)到 IV(CIV)通过水溶性细胞色素(cyt.)传递。在一些其他生物体中,这些复合物组装成更大的 CIIICIV 超复合物,其功能意义仍然是个谜。在这项工作中,我们在各种条件下测量了超复合物 cyt. 介导的 QH:O 氧化还原酶活性的动力学。数据表明,CIII 和 CIV 之间的电子连接仅限于超复合物的表面。具有 cyt. 的超复合物的单颗粒电子低温显微镜(cryo-EM)结构表明,带正电荷的 cyt. 结合到 CIII 或 CIV 或介于两者之间的中间位置。总之,结构和动力学数据表明 cyt. 沿着超复合物表面的带负电荷的斑块移动。因此,CIIICIV 超复合物的形成不是通过降低 cyt. 在三维空间中扩散的距离来增强电子转移速率,而是通过 cyt. 的二维(2D)扩散来促进电子转移。这种机制使 CIIICIV 超复合物能够增加 QH:O 氧化还原酶活性,并表明超复合物形成在呼吸链中可能具有调节作用。