Vitasari Denny, Cox Simon, Grassia Paul, Rosario Ruben
Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia.
Department of Mathematics, Aberystwyth University, Aberystwyth, UK.
Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190637. doi: 10.1098/rspa.2019.0637. Epub 2020 Feb 12.
The viscous froth model for two-dimensional (2D) dissipative foam rheology is combined with Marangoni-driven surfactant redistribution on a foam film. The model is used to study the flow of a 2D foam system consisting of one bubble partially filling a constricted channel and a single spanning film connecting it to the opposite channel wall. Gradients of surface tension arising from film deformation induce tangential flow that redistributes surfactant along the film. This redistribution, and the consequent changes in film tension, inhibit the structure from undergoing a foam-destroying topological change in which the spanning film leaves the bubble behind; foam stability is thereby increased. The system's behaviour is categorized by a Gibbs-Marangoni parameter, representing the ratio between the rate of motion in tangential and normal directions. Larger values of the Gibbs-Marangoni parameter induce greater variation in surface tension, increase the rate of surfactant redistribution and reduce the likelihood of topological changes. An intermediate regime is, however, identified in which the Gibbs-Marangoni parameter is large enough to create a significant gradient of surface tension but is not great enough to smooth out the flow-induced redistribution of surfactant entirely, resulting in non-monotonic variation in the bubble height, and hence in foam stability.
二维(2D)耗散泡沫流变学的粘性泡沫模型与泡沫膜上的马兰戈尼驱动的表面活性剂再分布相结合。该模型用于研究二维泡沫系统的流动,该系统由一个部分填充狭窄通道的气泡和一个将其连接到相对通道壁的单跨膜组成。膜变形引起的表面张力梯度会引发切向流动,使表面活性剂沿膜重新分布。这种再分布以及随之而来的膜张力变化,会抑制结构发生破坏泡沫的拓扑变化,即跨膜离开气泡;从而提高了泡沫的稳定性。该系统的行为由吉布斯-马兰戈尼参数分类,该参数表示切向和法向运动速率之间的比率。吉布斯-马兰戈尼参数的值越大,表面张力的变化就越大,表面活性剂再分布的速率就越高,拓扑变化的可能性就越小。然而,确定了一个中间区域,其中吉布斯-马兰戈尼参数足够大以产生显著的表面张力梯度,但又不足以完全消除流动引起的表面活性剂再分布,从而导致气泡高度的非单调变化,进而导致泡沫稳定性的非单调变化。