Suppr超能文献

人工智能系统在识别离散化石层中的应用。

Application of artificially intelligent systems for the identification of discrete fossiliferous levels.

作者信息

Martín-Perea David M, Courtenay Lloyd A, Domingo M Soledad, Morales Jorge

机构信息

Palaeobiology Department, Museo Nacional de Ciencias Naturales - CSIC, Madrid, Spain.

Geodynamics, Stratigraphy and Palaeontology Department, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

PeerJ. 2020 Mar 11;8:e8767. doi: 10.7717/peerj.8767. eCollection 2020.

Abstract

The separation of discrete fossiliferous levels within an archaeological or paleontological site with no clear stratigraphic horizons has historically been carried out using qualitative approaches, relying on two-dimensional transversal and longitudinal projection planes. Analyses of this type, however, can often be conditioned by subjectivity based on the perspective of the analyst. This study presents a novel use of Machine Learning algorithms for pattern recognition techniques in the automated separation and identification of fossiliferous levels. This approach can be divided into three main steps including: (1) unsupervised Machine Learning for density based clustering (2) expert-in-the-loop Collaborative Intelligence Learning for the integration of geological data followed by (3) supervised learning for the final fine-tuning of fossiliferous level models. For evaluation of these techniques, this method was tested in two Late Miocene sites of the Batallones Butte paleontological complex (Madrid, Spain). Here we show Machine Learning analyses to be a valuable tool for the processing of spatial data in an efficient and quantitative manner, successfully identifying the presence of discrete fossiliferous levels in both Batallones-3 and Batallones-10. Three discrete fossiliferous levels have been identified in Batallones-3, whereas another three have been differentiated in Batallones-10.

摘要

在没有清晰地层界线的考古或古生物学遗址中,离散化石层的分离在历史上一直采用定性方法,依赖二维横向和纵向投影平面。然而,这类分析往往会受到基于分析人员视角的主观性影响。本研究提出了一种在化石层自动分离和识别中使用机器学习算法进行模式识别技术的新方法。该方法可分为三个主要步骤,包括:(1)基于密度聚类的无监督机器学习;(2)地质数据整合的专家参与式协作智能学习;(3)对化石层模型进行最终微调的监督学习。为评估这些技术,该方法在巴塔洛内斯丘古生物复合体(西班牙马德里)的两个晚中新世遗址进行了测试。在此,我们展示了机器学习分析是一种以高效和定量方式处理空间数据的宝贵工具,成功识别出了巴塔洛内斯 - 3和巴塔洛内斯 - 10中离散化石层的存在。在巴塔洛内斯 - 3中识别出了三个离散化石层,而在巴塔洛内斯 - 10中则区分出了另外三个。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验