Suppr超能文献

无监督机器学习在地震解释中的应用:迈向无监督自动化解释工具。

Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool.

机构信息

Electrical Engineering Department, PUC-Rio, Rio de Janeiro 22451-900, Brazil.

Department of Informatics and Computer Science, Institute of Mathematics and Statistics, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, Brazil.

出版信息

Sensors (Basel). 2021 Sep 23;21(19):6347. doi: 10.3390/s21196347.

Abstract

Seismic interpretation is a fundamental process for hydrocarbon exploration. This activity comprises identifying geological information through the processing and analysis of seismic data represented by different attributes. The interpretation process presents limitations related to its high data volume, own complexity, time consumption, and uncertainties incorporated by the experts' work. Unsupervised machine learning models, by discovering underlying patterns in the data, can represent a novel approach to provide an accurate interpretation without any reference or label, eliminating the human bias. Therefore, in this work, we propose exploring multiple methodologies based on unsupervised learning algorithms to interpret seismic data. Specifically, two strategies considering classical clustering algorithms and image segmentation methods, combined with feature selection, were evaluated to select the best possible approach. Additionally, the resultant groups of the seismic data were associated with groups obtained from well logs of the same area, producing an interpretation with aggregated lithologic information. The resultant seismic groups correctly represented the main seismic facies and correlated adequately with the groups obtained from the well logs data.

摘要

地震解释是烃类勘探的基础过程。该活动包括通过处理和分析以不同属性表示的地震数据来识别地质信息。解释过程存在与高数据量、自身复杂性、时间消耗和专家工作中包含的不确定性相关的限制。无监督机器学习模型通过发现数据中的潜在模式,可以提供一种新颖的方法,无需任何参考或标签即可提供准确的解释,从而消除人为偏见。因此,在这项工作中,我们提出探索基于无监督学习算法的多种方法来解释地震数据。具体来说,评估了两种策略,考虑了经典聚类算法和图像分割方法,并结合特征选择,以选择最佳方法。此外,将地震数据的结果组与同一区域的测井曲线获得的组相关联,从而产生具有聚合岩性信息的解释。所得地震组正确地表示了主要的地震相,并与从测井曲线数据获得的组充分相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de33/8512750/d7d2f524389c/sensors-21-06347-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验