Menicacci Eleonora, Rotureau Patricia, Fayet Guillaume, Adamo Carlo
Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte, France.
Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, F-75005 Paris, France.
ACS Omega. 2020 Mar 9;5(10):5034-5040. doi: 10.1021/acsomega.9b03964. eCollection 2020 Mar 17.
The reaction mechanism involved in the decomposition of ammonium nitrate (AN) in the presence of CaCO and CaSO, commonly used for stabilization and the reduction of explosivity properties of AN, was theoretically investigated using a computational approach based on density functional theory. The presented computational results suggest that both carbonate and sulfate anions can intercept an acid proton from nitric acid issued from the first step of decomposition of AN, thus inhibiting its runaway decomposition and the generation of reactive species (radicals). The reaction then leads to the production of stable products, as experimentally observed. Our modeling outcomes allow for tracing a relationship between the capability of proton acceptance of both carbonate and sulfate anions and the macroscopic behavior of these two additives as inhibitor or inert in the AN mixture.
采用基于密度泛函理论的计算方法,从理论上研究了硝酸铵(AN)在通常用于稳定和降低其爆炸性能的碳酸钙(CaCO₃)和硫酸钙(CaSO₄)存在下分解所涉及的反应机理。所呈现的计算结果表明,碳酸根和硫酸根阴离子均可从硝酸铵分解第一步产生的硝酸中截取一个酸质子,从而抑制其失控分解以及活性物种(自由基)的生成。然后,该反应会生成稳定产物,正如实验所观察到的那样。我们的模拟结果有助于探寻碳酸根和硫酸根阴离子的质子接受能力与这两种添加剂在硝酸铵混合物中作为抑制剂或惰性物质的宏观行为之间的关系。