Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Nat Struct Mol Biol. 2020 Apr;27(4):342-350. doi: 10.1038/s41594-020-0397-5. Epub 2020 Mar 23.
Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery. We demonstrate that cTRP nanoparticles can self-assemble from smaller individual subunits, can be produced from prokaryotic and human expression platforms, can employ a variety of cargo attachment strategies and can be used for applications (such as T-cell culture and expansion) requiring high-avidity molecular interactions on the cell surface.
蛋白质工程使设计具有各种大小、形状、对称性和亚基组成的分子支架成为可能。具有多个蛋白质结构域的对称蛋白质纳米颗粒由于增加了亲和力以及改善了溶液行为和稳定性,因此可以表现出增强的功能特性。在这里,我们描述了一种由 24 个相同重复基序组成的计算设计的圆形串联重复蛋白(cTRP)的创建和特性,该蛋白可以在其外围的定义位置显示各种功能蛋白质结构域(货物)。我们证明了 cTRP 纳米颗粒可以从小的单个亚基自组装,可由原核和人类表达平台产生,可以采用多种货物附着策略,并可用于需要在细胞表面进行高亲和力分子相互作用的应用(例如 T 细胞培养和扩增)。