Suppr超能文献

利用金属离子诱导氧化石墨烯组装构建电子鼻,通过呼气诊断肺癌。

Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath.

机构信息

Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.

Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17713-17724. doi: 10.1021/acsami.0c00720. Epub 2020 Apr 1.

Abstract

A flexible electronic-nose (E-nose) was constructed by assembling graphene oxide (GO) using different types of metal ions (M) with different ratio of GO to M. Owing to the cross-linked networks, the M-induced assembly of graphene films resulted in different porous structures. A chemi-resistive sensor array was constructed by coating the GO-M hybrid films on PET substrate patterned with 8 interdigited electrodes, followed by in situ reduction of GO to rGO with hydrazine vapor. Each of the sensing elements on the sensor array showed a cross-reactive response toward different types of gases at room temperature. Compared to bare rGO, incorporation of metal species into rGO significantly improved sensitivity owing to the additional interaction between metal species and gas analyte. Principle component analysis (PCA) showed that four types of exhaled breath (EB) biomarkers including acetone, isoprene, ammonia, and hydrothion in sub-ppm concentrations can be discriminated well. To overcome the interference from humidity in EB, a protocol to collect and analyze EB gases was established and further validated by simulated EB samples. Finally, clinical EB samples collected from patients with lung cancer and healthy controls were analyzed. In a 106 case study, the healthy group can be accurately distinguished from lung cancer patients by linear discrimination analysis. With the assistance of an artificial neural network, a sensitivity of 95.8% and specificity of 96.0% can be achieved in the diagnosis of lung cancer based on the E-nose. We also find that patients with renal failure can be distinguished through comparison of dynamic response curves between patient and healthy samples on some specific sensing elements. These results demonstrate the proposed E-nose will have great potential in noninvasive disease screening and personalized healthcare management.

摘要

一种灵活的电子鼻(E-nose)通过组装氧化石墨烯(GO)使用不同类型的金属离子(M)以不同的 GO 与 M 的比例来构建。由于交联网络,石墨烯薄膜的 M 诱导组装导致了不同的多孔结构。通过将 GO-M 杂化薄膜涂覆在具有 8 个叉指电极的 PET 基底上,构建了一个电阻式传感器阵列,然后用肼蒸气原位还原 GO 为 rGO。传感器阵列上的每个传感元件在室温下对不同类型的气体表现出交叉反应性响应。与裸 rGO 相比,金属物种的掺入显著提高了 rGO 的灵敏度,这是由于金属物种与气体分析物之间的额外相互作用。主成分分析(PCA)表明,在亚 ppm 浓度下,可以很好地区分四种呼出的呼吸(EB)生物标志物,包括丙酮、异戊二烯、氨和氢硫。为了克服 EB 中湿度的干扰,建立了收集和分析 EB 气体的方案,并通过模拟 EB 样品进一步验证。最后,分析了来自肺癌患者和健康对照者的临床 EB 样本。在 106 例研究中,通过线性判别分析,健康组可以准确地区分肺癌患者。在人工神经网络的协助下,基于电子鼻,肺癌的诊断灵敏度可以达到 95.8%,特异性可以达到 96.0%。我们还发现,通过比较患者和健康样本在一些特定传感元件上的动态响应曲线,可以区分肾衰竭患者。这些结果表明,所提出的 E-nose 在无创疾病筛查和个性化医疗保健管理方面具有巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验