Domingo Riyad, van der Westhuyzen Renier, Hamann Anton R, Mostert Konrad J, Barnard Leanne, Paquet Tanya, Tjhin Erick T, Saliba Kevin J, van Otterlo Willem A L, Strauss Erick
Department of Biochemistry , Stellenbosch University , Private Bag X1 , Matieland 7602 , South Africa . Email:
Research School of Biology , The Australian National University , Canberra , ACT , Australia.
Medchemcomm. 2019 Oct 17;10(12):2118-2125. doi: 10.1039/c9md00312f. eCollection 2019 Dec 1.
The biosynthesis of the essential metabolic cofactor coenzyme A (CoA) has been receiving increasing attention as a new target that shows potential to counter the rising resistance to established antimicrobials. In particular, phosphopantothenoylcysteine synthetase (PPCS)-the second CoA biosynthesis enzyme that is found as part of the bifunctional CoaBC protein in bacteria, but is monofunctional in eukaryotes-has been validated as a target through extensive genetic knockdown studies in . Moreover, it has been identified as the molecular target of the fungal natural product CJ-15,801 that shows selective activity against and the malaria parasite . As such, CJ-15,801 and 4'-phospho-CJ-15,801 (its metabolically active form) are excellent tool compounds for use in the development of new antimicrobial PPCS inhibitors. Unfortunately, further study and analysis of CJ-15,801 is currently being hampered by several unique challenges posed by its synthesis. In this study we describe how these challenges were overcome by using a robust palladium-catalyzed coupling to form the key -acyl vinylogous carbamate moiety with retention of stereochemistry, and by extensive investigation of protecting groups suited to the labile functional group combinations contained in this molecule. We also demonstrate that using TBAF for deprotection causes undesired off-target effects related to the presence of residual tertiary ammonium salts. Finally, we provide a new method for the chemoenzymatic preparation of 4'-phospho-CJ-15,801 on multi-milligram scale, after showing that chemical synthesis of the molecule is not practical. Taken together, the results of this study advances our pursuit to discover new antimicrobials that specifically target CoA biosynthesis and/or utilization.
必需代谢辅因子辅酶A(CoA)的生物合成作为一个新的靶点受到越来越多的关注,该靶点显示出对抗日益增加的对现有抗菌药物耐药性的潜力。特别是,磷酸泛酰巯基乙胺合成酶(PPCS)——CoA生物合成的第二种酶,在细菌中作为双功能CoaBC蛋白的一部分存在,但在真核生物中是单功能的——已通过在……中的广泛基因敲低研究被确认为一个靶点。此外,它已被确定为真菌天然产物CJ - 15,801的分子靶点,该产物对……和疟原虫显示出选择性活性。因此,CJ - 15,801和4'-磷酸 - CJ - 15,801(其代谢活性形式)是用于开发新型抗菌PPCS抑制剂的优秀工具化合物。不幸的是,目前对CJ - 15,801的进一步研究和分析受到其合成带来的几个独特挑战的阻碍。在本研究中,我们描述了如何通过使用稳健的钯催化偶联来形成关键的 - 酰基烯醇式氨基甲酸酯部分并保留立体化学,以及通过对适合该分子中不稳定官能团组合的保护基团进行广泛研究来克服这些挑战。我们还证明,使用TBAF进行脱保护会导致与残留叔铵盐的存在相关的不期望的脱靶效应。最后,在表明该分子的化学合成不切实际之后,我们提供了一种在多毫克规模上化学酶法制备4'-磷酸 - CJ - 15,801的新方法。综上所述,本研究结果推动了我们发现特异性靶向CoA生物合成和/或利用的新型抗菌药物的追求。