Suppr超能文献

原子接触在肌红蛋白振动能量转移中的作用。

Role of atomic contacts in vibrational energy transfer in myoglobin.

作者信息

Mizuno Misao, Mizutani Yasuhisa

机构信息

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.

出版信息

Biophys Rev. 2020 Apr;12(2):511-518. doi: 10.1007/s12551-020-00681-w. Epub 2020 Mar 23.

Abstract

Heme proteins are ideal systems to investigate vibrational energy flow at the atomic level. Upon photoexcitation, a large amount of excess vibrational energy is selectively deposited on heme due to extremely fast internal conversion. This excess energy is redistributed to the surrounding protein moiety and then to water. Vibrational energy flow in myoglobin (Mb) was examined using picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) spectroscopy. We used the Trp residue directly contacting the heme group as a selective probe for vibrationally excited populations. Trp residues were placed at different position close to the heme by site-directed mutagenesis. This technique allows us to monitor the excess energy on residue-to-residue basis. Anti-Stokes UVRR measurements for Mb mutants suggest that the dominant channel for energy transfer in Mb is the pathway through atomic contacts between heme and nearby amino acid residues as well as that between the protein and solvent water. It is found that energy flow through proteins is analogous to collisional exchange processes in solutions.

摘要

血红素蛋白是在原子水平上研究振动能量流动的理想体系。光激发后,由于极快的内转换过程,大量多余的振动能量被选择性地沉积在血红素上。这些多余的能量会重新分布到周围的蛋白质部分,然后再传递到水中。利用皮秒时间分辨反斯托克斯紫外共振拉曼(UVRR)光谱研究了肌红蛋白(Mb)中的振动能量流动。我们将直接与血红素基团接触的色氨酸(Trp)残基用作振动激发态群体的选择性探针。通过定点诱变将Trp残基置于靠近血红素的不同位置。该技术使我们能够逐个残基地监测多余能量。对Mb突变体的反斯托克斯UVRR测量表明,Mb中能量转移的主要通道是通过血红素与附近氨基酸残基之间以及蛋白质与溶剂水之间的原子接触途径。研究发现,通过蛋白质的能量流动类似于溶液中的碰撞交换过程。

相似文献

1
Role of atomic contacts in vibrational energy transfer in myoglobin.
Biophys Rev. 2020 Apr;12(2):511-518. doi: 10.1007/s12551-020-00681-w. Epub 2020 Mar 23.
2
Importance of Atomic Contacts in Vibrational Energy Flow in Proteins.
J Phys Chem Lett. 2016 Jun 2;7(11):1950-4. doi: 10.1021/acs.jpclett.6b00785. Epub 2016 May 12.
3
Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins.
J Phys Chem B. 2018 Jun 7;122(22):5877-5884. doi: 10.1021/acs.jpcb.8b03518. Epub 2018 May 23.
4
Direct observation of vibrational energy flow in cytochrome c.
J Phys Chem B. 2011 Nov 10;115(44):13057-64. doi: 10.1021/jp207500b. Epub 2011 Oct 13.
6
Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin.
Science. 1997 Oct 17;278(5337):443-6. doi: 10.1126/science.278.5337.443.
8
Observing Vibrational Energy Flow in a Protein with the Spatial Resolution of a Single Amino Acid Residue.
J Phys Chem Lett. 2014 Sep 18;5(18):3269-73. doi: 10.1021/jz501882h. Epub 2014 Sep 10.
10
Noncovalent π Interactions in Mutated Aquomet-Myoglobin Proteins: A QM/MM and Local Vibrational Mode Study.
Biochemistry. 2023 Aug 1;62(15):2325-2337. doi: 10.1021/acs.biochem.3c00192. Epub 2023 Jul 17.

引用本文的文献

2
Temporal and spatial resolution of distal protein motions that activate hydrogen tunneling in soybean lipoxygenase.
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2211630120. doi: 10.1073/pnas.2211630120. Epub 2023 Mar 3.
3
Tracking Energy Transfer across a Platinum Center.
J Phys Chem A. 2022 Aug 4;126(30):4915-4930. doi: 10.1021/acs.jpca.2c02017. Epub 2022 Jul 26.
4
Biophysical Reviews' national biophysical society partnership program.
Biophys Rev. 2020 Apr;12(2):187-192. doi: 10.1007/s12551-020-00693-6. Epub 2020 Apr 29.

本文引用的文献

1
Energy Transport across Interfaces in Biomolecular Systems.
J Phys Chem B. 2019 Nov 14;123(45):9507-9524. doi: 10.1021/acs.jpcb.9b07086. Epub 2019 Oct 1.
2
Scaling of Rates of Vibrational Energy Transfer in Proteins with Equilibrium Dynamics and Entropy.
J Phys Chem B. 2018 Oct 11;122(40):9331-9339. doi: 10.1021/acs.jpcb.8b07552. Epub 2018 Oct 2.
3
Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins.
J Phys Chem B. 2018 Jun 7;122(22):5877-5884. doi: 10.1021/acs.jpcb.8b03518. Epub 2018 May 23.
4
Ultrafast anisotropic protein quake propagation after CO photodissociation in myoglobin.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10565-70. doi: 10.1073/pnas.1603539113. Epub 2016 Sep 6.
5
Importance of Atomic Contacts in Vibrational Energy Flow in Proteins.
J Phys Chem Lett. 2016 Jun 2;7(11):1950-4. doi: 10.1021/acs.jpclett.6b00785. Epub 2016 May 12.
6
Scaling Rules for Vibrational Energy Transport in Globular Proteins.
J Phys Chem Lett. 2016 Jan 7;7(1):25-30. doi: 10.1021/acs.jpclett.5b02514. Epub 2015 Dec 11.
7
Observing Vibrational Energy Flow in a Protein with the Spatial Resolution of a Single Amino Acid Residue.
J Phys Chem Lett. 2014 Sep 18;5(18):3269-73. doi: 10.1021/jz501882h. Epub 2014 Sep 10.
8
Vibrational energy flow in the villin headpiece subdomain: master equation simulations.
J Chem Phys. 2015 Feb 21;142(7):075101. doi: 10.1063/1.4907881.
9
Energy propagation and network energetic coupling in proteins.
J Phys Chem B. 2015 Feb 5;119(5):1835-46. doi: 10.1021/jp509906m. Epub 2015 Jan 21.
10
Direct observation of vibrational energy flow in cytochrome c.
J Phys Chem B. 2011 Nov 10;115(44):13057-64. doi: 10.1021/jp207500b. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验