Lee Jeehee, Lee Haesung A, Shin Mikyung, Juang Lih Jiin, Kastrup Christian J, Go Gyung Min, Lee Haeshin
Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
ACS Nano. 2020 Apr 28;14(4):4755-4766. doi: 10.1021/acsnano.0c00621. Epub 2020 Mar 30.
Special surface wettability attracts significant attention. In this study, dramatic differences in wettability are demonstrated for microparticles with the same chemical composition, SiO. One is natural silica prepared from the diatom, , and the other is synthetic silica. We found that surface properties of synthetic silica are hydro- and hemophobic. However, diatom frustule silica exhibits superhydrophilicity and even superhemophilicity. Interestingly, such superhydrophilicity of natural silica is not solely originated from nanoporous structures of diatoms but from the synergy of high-density silanol anions and the nanoarchitecture. Furthermore, the observation of superhemophilicity of natural silica is also an interesting finding, because not all superhydrophilic surfaces show superhemophilicity. We demonstrate that superhemowettability is a fundamental principle for developing micropowder-based hemostatic materials despite existing hemorrhaging studies using diatoms.
特殊的表面润湿性引起了广泛关注。在本研究中,化学成分相同的微粒SiO表现出显著的润湿性差异。一种是由硅藻制备的天然二氧化硅,另一种是合成二氧化硅。我们发现合成二氧化硅的表面性质具有疏水性和半疏水性。然而,硅藻壳二氧化硅表现出超亲水性甚至超半亲水性。有趣的是,天然二氧化硅的这种超亲水性并非仅仅源于硅藻的纳米多孔结构,而是高密度硅醇阴离子与纳米结构协同作用的结果。此外,天然二氧化硅超半亲水性的发现也很有趣,因为并非所有超亲水表面都表现出超半亲水性。尽管已有使用硅藻进行的出血研究,但我们证明超半润湿性是开发基于微粉的止血材料的基本原理。