Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States.
Nano Lett. 2020 May 13;20(5):2986-2992. doi: 10.1021/acs.nanolett.9b04789. Epub 2020 Apr 2.
We compute the dielectric properties of freestanding and metal-supported borophene from first-principles time-dependent density functional theory. We find that both the low- and high-energy plasmons of borophene are fully quenched by the presence of a metallic substrate at borophene-metal distances smaller than ≃9 Å. Based on these findings, we derive an electrodynamic model of the interacting, momentum-dependent polarizability for a two-dimensional metal on a model metallic substrate, which quantitatively captures the evolution of the dielectric properties of borophene as a function of metal-borophene distance. Applying this model to a series of metallic substrates, we show that maximizing the plasmon energy detuning between borophene and substrate is the key material descriptor for plasmonic performance.
我们通过第一性原理含时密度泛函理论计算了自由态和金属支撑硼烯的介电性质。我们发现,在硼烯-金属距离小于约 9 Å 的情况下,金属衬底的存在完全猝灭了硼烯的低能和高能等离子体。基于这些发现,我们推导出了一个二维金属在模型金属衬底上的相互作用、动量相关极化率的电动力学模型,该模型定量地捕捉了硼烯的介电性质随金属-硼烯距离的演化。将该模型应用于一系列金属衬底,我们表明,使硼烯和衬底之间的等离子体能量失谐最大化是等离子体性能的关键材料描述符。