Suppr超能文献

Kohn-Sham 密度泛函计算揭示了 Rubisco 催化的烯醇化和羧化反应中的质子线。

Kohn-Sham Density Functional Calculations Reveal Proton Wires in the Enolization and Carboxylase Reactions Catalyzed by Rubisco.

机构信息

Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.

出版信息

J Phys Chem B. 2020 Apr 16;124(15):3015-3026. doi: 10.1021/acs.jpcb.0c01169. Epub 2020 Apr 6.

Abstract

Ribulose 1,5-bisphosphate (RuBP) carboxylase-oxygenase (Rubisco) plays a fundamental role in the carbon cycle by fixing the atmospheric CO used in photosynthesis. Rubisco is all the more remarkable because it must catalyze some difficult multistep reaction chemistry involving proton transfers within the one active site. In the present study, we have used Kohn-Sham density functional theory at the B3LYP/6-31G* level with basis set superposition error and dispersion corrections (B3LYP-gCP-D3) to examine the possibility that the proton transfers can take place through molecular wires (including active-site water molecules) via the classical Grotthuss proton-shuttle mechanism. The results support an essential role for water molecules found in the crystal structures of Rubisco complexes as facilitators of proton transport in all the rate-limiting (catalytic) reaction steps through a network of short proton wires within the Rubisco active site. We suggest that completion of the initial product turnover (cycle) requires two excess protons produced in the initial carbamylation that is required for Rubisco activation. By use of proton wires, a large number of reaction steps may be accommodated within a single active site without necessitating the input of excessive conformational strain energy arising from the movement of residue side chains into positions where direct protonation of substrates can occur. The involvement of the identified types of proton wires in the kinetic mechanism is capable of providing a unique explanation for various experimental observations, including deuterium isotope effects and the results of site-directed mutagenesis experiments, and may thus provide a realistic solution to the problem of Rubisco's challenging chemistry.

摘要

核酮糖 1,5-二磷酸(RuBP)羧化酶-加氧酶(Rubisco)通过固定光合作用中使用的大气 CO 来在碳循环中发挥基本作用。Rubisco 更为显著,因为它必须催化一些涉及质子在一个活性位点内转移的困难多步反应化学。在本研究中,我们使用 Kohn-Sham 密度泛函理论在 B3LYP/6-31G*水平上,结合基组叠加误差和色散校正(B3LYP-gCP-D3),研究质子转移是否可以通过分子导线(包括活性位点水分子)通过经典的 Grotthuss 质子转移机制发生。结果支持在 Rubisco 复合物的晶体结构中发现的水分子作为质子传输促进剂的基本作用,在 Rubisco 活性位点内通过短质子导线网络促进所有限速(催化)反应步骤中的质子转移。我们建议,初始产物周转(循环)的完成需要在 Rubisco 激活所需的初始氨甲酰化中产生两个多余的质子。通过质子导线,可以在单个活性位点中容纳大量反应步骤,而无需输入来自残基侧链进入可以直接质子化底物的位置的过度构象应变能。所鉴定的质子导线类型在动力学机制中的参与能够为各种实验观察提供独特的解释,包括氘同位素效应和定点突变实验的结果,并且可能为 Rubisco 具有挑战性的化学提供现实的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验