Suppr超能文献

评估多污染物指标,用于描述近路环境中与交通相关的空气污染暴露情况。

Evaluating a multipollutant metric for use in characterizing traffic-related air pollution exposures within near-road environments.

机构信息

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA.

Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.

出版信息

Environ Res. 2020 May;184:109389. doi: 10.1016/j.envres.2020.109389. Epub 2020 Mar 13.

Abstract

Accurately characterizing human exposures to traffic-related air pollutants (TRAPs) is critical to public health protection. However, quantifying exposure to this single source is challenging, given its extremely heterogeneous chemical composition. Efforts using single-species tracers of TRAP are, thus, lacking in their ability to accurately reflect exposures to this complex mixture. There have been recent discussions centered on adopting a multipollutant perspective for sources with many emitted pollutants to maximize the benefits of control expenditures as well as to minimize population and ecosystem exposure. As part of a larger study aimed to assess a complete emission-to-exposure pathway of primary traffic pollution and understand exposure of individuals in the near-road environment, an intensive field campaign measured TRAPs and related data (e.g., meteorology, traffic counts, and regional air pollutant levels) in Atlanta along one of the busiest highway corridors in the US. Given the dynamic nature of the near-road environment, a multipollutant exposure metric, the Integrated Mobile Source Indicator (IMSI), which was generated based on emissions-based ratios, was calculated and compared to traditional single-species methods for assessing exposure to mobile source emissions. The current analysis examined how both traditional and non-traditional metrics vary spatially and temporally in the near-road environment, how they compare with each other, and whether they have the potential to offer more accurate means of assigning exposures to primary traffic emissions. The results indicate that compared to the traditional single pollutant specie, the multipollutant IMSI metric provided a more spatially stable method for assessing exposure, though variations occurred based on location with varying results among the six sites within a kilometer of the highway.

摘要

准确描述人类接触交通相关空气污染物 (TRAPs) 对于保护公众健康至关重要。然而,由于其化学成分极其复杂,量化对这种单一来源的接触具有挑战性。因此,使用 TRAP 的单一物种示踪剂来定量接触这种复杂混合物的能力有限。最近人们讨论了采用多污染物视角来处理排放多种污染物的污染源,以最大限度地提高控制支出的效益,同时将人群和生态系统的接触降到最低。作为评估主要交通污染排放到暴露完整路径并了解近路环境中个体暴露的一项更大研究的一部分,一项密集的实地活动在美国最繁忙的高速公路走廊之一的亚特兰大测量了 TRAPs 及相关数据(例如气象、交通计数和区域空气污染物水平)。鉴于近路环境的动态性质,基于排放比生成了多污染物暴露指标综合移动源指标 (IMSI),并将其与传统的单一物种方法进行了评估,以评估对移动源排放的暴露。目前的分析研究了传统和非传统指标在近路环境中如何在空间和时间上变化,它们如何相互比较,以及它们是否有可能提供更准确的方法来分配对主要交通排放的暴露。结果表明,与传统的单一污染物物种相比,多污染物 IMSI 指标为评估暴露提供了一种更稳定的空间方法,尽管基于位置会发生变化,但在距高速公路一公里范围内的六个站点中,结果各不相同。

相似文献

7
Near-road Vehicle Emissions Air Quality Monitoring for Exposure Modeling.用于暴露建模的近道路车辆排放空气质量监测。
Atmos Environ (1994). 2020 Mar 1;224. doi: 10.1016/j.atmosenv.2020.117318. Epub 2020 Jan 31.

引用本文的文献

本文引用的文献

3
Roadside Vegetation Design to Improve Local, Near-Road Air Quality.改善当地近路空气质量的路边植被设计
Transp Res D Transp Environ. 2017 May 4;52(11):354-361. doi: 10.1016/j.trd.2017.03.013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验