Suppr超能文献

用于新生 RNA 展示的 DNA 转录的化学阻断。

Chemical roadblocking of DNA transcription for nascent RNA display.

机构信息

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850.

出版信息

J Biol Chem. 2020 May 8;295(19):6401-6412. doi: 10.1074/jbc.RA120.012641. Epub 2020 Mar 24.

Abstract

Site-specific arrest of RNA polymerases (RNAPs) is fundamental to several technologies that assess RNA structure and function. Current transcription "roadblocking" approaches inhibit transcription elongation by blocking RNAP with a protein bound to the DNA template. One limitation of protein-mediated transcription roadblocking is that it requires inclusion of a protein factor extrinsic to the minimal transcription reaction. In this work, we developed a chemical approach for halting transcription by RNAP. We first established a sequence-independent method for site-specific incorporation of chemical lesions into dsDNA templates by sequential PCR and translesion synthesis. We then show that interrupting the transcribed DNA strand with an internal desthiobiotin-triethylene glycol modification or 1,N-etheno-2'-deoxyadenosine base efficiently and stably halts RNAP transcription. By encoding an intrinsic stall site within the template DNA, our chemical transcription roadblocking approach enables display of nascent RNA molecules from RNAP in a minimal transcription reaction.

摘要

RNA 聚合酶(RNAP)的位点特异性捕获对于评估 RNA 结构和功能的几种技术至关重要。当前的转录“阻断”方法通过用结合到 DNA 模板的蛋白质来阻断 RNAP 来抑制转录延伸。蛋白质介导的转录阻断的一个限制是它需要包括最小转录反应之外的蛋白质因子。在这项工作中,我们开发了一种通过 RNAP 停止转录的化学方法。我们首先通过顺序 PCR 和跨损伤合成建立了一种在 dsDNA 模板中进行序列非依赖性化学损伤定点掺入的方法。然后,我们表明,用内部去硫生物素-三乙二醇修饰或 1,N-亚乙氧基-2'-脱氧腺苷碱基打断被转录的 DNA 链可有效地、稳定地阻断 RNAP 转录。通过在模板 DNA 内编码内在的阻滞位点,我们的化学转录阻断方法可在最小的转录反应中展示从 RNAP 延伸的新生 RNA 分子。

相似文献

1
Chemical roadblocking of DNA transcription for nascent RNA display.
J Biol Chem. 2020 May 8;295(19):6401-6412. doi: 10.1074/jbc.RA120.012641. Epub 2020 Mar 24.
3
In vitro transcription of a torsionally constrained template.
Nucleic Acids Res. 2002 Feb 1;30(3):803-9. doi: 10.1093/nar/30.3.803.
4
Single-strand promoter traps for bacterial RNA polymerase.
Biochem J. 2013 Jun 1;452(2):241-8. doi: 10.1042/BJ20130069.
5
Distinct effects of DNA lesions on RNA synthesis by Escherichia coli RNA polymerase.
Biochem Biophys Res Commun. 2019 Feb 26;510(1):122-127. doi: 10.1016/j.bbrc.2019.01.062. Epub 2019 Jan 18.
6
Isolation of E. coli RNA polymerase transcription elongation complexes by selective solid-phase photoreversible immobilization.
Methods Enzymol. 2023;691:223-250. doi: 10.1016/bs.mie.2023.03.019. Epub 2023 Apr 22.
7
Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase.
J Biol Chem. 2020 Jul 10;295(28):9583-9595. doi: 10.1074/jbc.RA119.011844. Epub 2020 May 21.
9
Road rules for traffic on DNA-systematic analysis of transcriptional roadblocking in vivo.
Nucleic Acids Res. 2014 Aug;42(14):8861-72. doi: 10.1093/nar/gku627. Epub 2014 Jul 17.
10
Structural basis for transcription reactivation by RapA.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2006-10. doi: 10.1073/pnas.1417152112. Epub 2015 Feb 2.

引用本文的文献

1
Sequential structure probing of cotranscriptional RNA folding intermediates.
Nat Commun. 2025 Jun 1;16(1):5085. doi: 10.1038/s41467-025-60425-w.
2
Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display.
Nat Commun. 2025 Mar 10;16(1):2350. doi: 10.1038/s41467-025-57415-3.
3
Sequential structure probing of cotranscriptional RNA folding intermediates.
bioRxiv. 2024 Oct 17:2024.10.14.618260. doi: 10.1101/2024.10.14.618260.
4
Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing.
Nat Commun. 2023 Nov 29;14(1):7839. doi: 10.1038/s41467-023-43395-9.
5
Isolation of E. coli RNA polymerase transcription elongation complexes by selective solid-phase photoreversible immobilization.
Methods Enzymol. 2023;691:223-250. doi: 10.1016/bs.mie.2023.03.019. Epub 2023 Apr 22.
6
When push comes to shove - RNA polymerase and DNA-bound protein roadblocks.
Biophys Rev. 2023 Jun 10;15(3):355-366. doi: 10.1007/s12551-023-01064-7. eCollection 2023 Jun.

本文引用的文献

1
A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control.
Nat Chem Biol. 2019 Nov;15(11):1067-1076. doi: 10.1038/s41589-019-0382-7. Epub 2019 Oct 21.
2
Versatile transcription control based on reversible dCas9 binding.
RNA. 2019 Nov;25(11):1457-1469. doi: 10.1261/rna.071613.119. Epub 2019 Jul 18.
3
Distinct effects of DNA lesions on RNA synthesis by Escherichia coli RNA polymerase.
Biochem Biophys Res Commun. 2019 Feb 26;510(1):122-127. doi: 10.1016/j.bbrc.2019.01.062. Epub 2019 Jan 18.
4
Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding.
Nucleic Acids Res. 2017 Jul 7;45(12):e109. doi: 10.1093/nar/gkx233.
6
Cotranscriptional folding of a riboswitch at nucleotide resolution.
Nat Struct Mol Biol. 2016 Dec;23(12):1124-1131. doi: 10.1038/nsmb.3316. Epub 2016 Oct 31.
7
Two transcription pause elements underlie a σ70-dependent pause cycle.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4374-80. doi: 10.1073/pnas.1512986112. Epub 2015 Jul 27.
8
Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling.
Nat Methods. 2014 Jun;11(6):683-8. doi: 10.1038/nmeth.2970. Epub 2014 May 8.
10
Direct observation of cotranscriptional folding in an adenine riboswitch.
Science. 2012 Oct 19;338(6105):397-400. doi: 10.1126/science.1225722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验