Chair of Biophysics, Gottfried Schatz Research Center, Medical University Graz, Neue Stiftingtalstraße 6/IV, 8010, Graz, Austria.
Chair of Biophysics, Gottfried Schatz Research Center, Medical University Graz, Neue Stiftingtalstraße 6/IV, 8010, Graz, Austria.
Prog Biophys Mol Biol. 2020 Nov;157:3-10. doi: 10.1016/j.pbiomolbio.2020.03.001. Epub 2020 Mar 23.
Electrophysiologists routinely use simple voltage steps to evaluate cell membrane capacitance derived from corresponding current responses. Frequently, the resting membrane voltage V is employed as holding potential for the subsequent command voltage step and more or less accurate methods are utilised to analyse the transient current. Another choice as holding potential is the peak of the "quasi steady-state" current to voltage relationship, V. The aim of this study is the systematic evaluation of capacitance estimation accuracy from voltage step experiments depending on the choice of holding potential and analysis method. In this paper, a simulation approach is employed to analyse the current response of a model patch-clamp circuit. Four commonly accepted methods are implemented, utilizing different aspects of the transient current (charge, membrane time constant, and influence of the series resistance) in various combinations and with various degrees of refinement. This simulation study indicates an acceptable accuracy of the elaborated methods for capacitance estimation at holding potentials V and V over a broad range of capacitance as well as series resistance values. Simple integration of the current transient provides sufficient accuracy at holding potentials, which effectively minimizes changes in resistive membrane current flow during command voltage steps (particularly around V). However, biphasic command protocols performed at V activate voltage dependent sodium channels, thereby possibly leading to the threshold voltage for an action potential. Compared to V, all methods utilizing monophasic step protocols, gain additional accuracy, when applied at V as holding potential.
电生理学家通常使用简单的电压阶跃来评估源自相应电流响应的细胞膜电容。通常,将静息膜电压 V 用作随后的命令电压阶跃的保持电位,并且或多或少会使用更准确的方法来分析瞬态电流。作为保持电位的另一种选择是“准稳态”电流-电压关系的峰值 V。本研究的目的是系统评估根据保持电位和分析方法选择从电压阶跃实验中估算电容的准确性。在本文中,采用模拟方法来分析模型膜片钳电路的电流响应。实现了四种常用的方法,利用瞬态电流的不同方面(电荷、膜时间常数和串联电阻的影响)以各种组合和不同程度的细化来实现。这项模拟研究表明,在广泛的电容和串联电阻值范围内,对于在保持电位 V 和 V 下的电容估算,所阐述的方法具有可接受的准确性。在保持电位下,简单地对电流瞬态进行积分即可提供足够的准确性,这有效地最小化了命令电压阶跃期间电阻膜电流流动的变化(特别是在 V 附近)。然而,在 V 处执行的双相命令协议会激活电压依赖性钠通道,从而可能导致动作电位的阈值电压。与 V 相比,当应用于 V 作为保持电位时,所有利用单相阶跃协议的方法都获得了额外的准确性。