Suppr超能文献

基于 Taylor 数据库的人工神经网络的人类前列腺癌多诊断模型研究。

The study of multiple diagnosis models of human prostate cancer based on Taylor database by artificial neural networks.

机构信息

Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Laboratory Animal Center, Guangzhou Medical University, Guangzhou, China.

出版信息

J Chin Med Assoc. 2020 May;83(5):471-477. doi: 10.1097/JCMA.0000000000000299.

Abstract

BACKGROUND

Prostate cancer (PCa) is the most common malignancy seen in men and the second leading cause of cancer-related death in males. The incidence and mortality associated with PCa has been rapidly increasing in China recently.

METHODS

Multiple diagnostic models of human PCa were developed based on Taylor database by combining the artificial neural networks (ANNs) to enhance the ability of PCa diagnosis. Genetic algorithm (GA) is used to select feature genes as numerical encoded parameters that reflect cancer, metastatic, or normal samples. Back propagation (BP) neural network and learning vector quantization (LVQ) neural network were used to build different Cancer/Normal, Primary/Metastatic, and Gleason Grade diagnostic models.

RESULTS

The performance of these modeling approaches was evaluated by predictive accuracy (ACC) and area under the receiver operating characteristic curve (AUC). By observing the statistically significant parameters of the three training sets, our Cancer/Normal, Primary/Metastatic, and Gleason Grade models' with ACC and AUC can be drawn (97.33%, 0.9832), (99.17%, 0.9952), and (90.48%, 0.8742), respectively.

CONCLUSION

These results indicated that our diagnostic models of human PCa based on Taylor database combining the feature gene expression profiling data and artificial intelligence algorithms might act as a powerful tool for diagnosing PCa. Gleason Grade diagnostic models were used as novel prognostic diagnosis models for biochemical recurrence-free survival and overall survival, which might be helpful in the prognostic diagnosis of PCa in patients.

摘要

背景

前列腺癌(PCa)是男性中最常见的恶性肿瘤,也是男性癌症相关死亡的第二大主要原因。最近,中国与前列腺癌相关的发病率和死亡率迅速上升。

方法

通过结合人工神经网络(ANNs),基于 Taylor 数据库开发了多种人类前列腺癌诊断模型,以提高前列腺癌诊断能力。遗传算法(GA)用于选择特征基因作为反映癌症、转移或正常样本的数值编码参数。反向传播(BP)神经网络和学习向量量化(LVQ)神经网络用于构建不同的癌症/正常、原发/转移和 Gleason 分级诊断模型。

结果

通过预测准确率(ACC)和接收者操作特征曲线下的面积(AUC)评估这些建模方法的性能。通过观察三个训练集的统计显著参数,可以得出我们的癌症/正常、原发/转移和 Gleason 分级模型的 ACC 和 AUC 分别为(97.33%,0.9832)、(99.17%,0.9952)和(90.48%,0.8742)。

结论

这些结果表明,我们基于 Taylor 数据库的人类前列腺癌诊断模型结合特征基因表达谱数据和人工智能算法,可能成为诊断前列腺癌的有力工具。Gleason 分级诊断模型可作为生化无复发生存和总生存的新型预后诊断模型,可能有助于前列腺癌患者的预后诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验