Wang Qiang, Wei Jianchang, Chen Zhuanpeng, Zhang Tong, Zhong Junbin, Zhong Bingzheng, Yang Ping, Li Wanglin, Cao Jie
Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China.
Oncol Lett. 2019 Mar;17(3):3314-3322. doi: 10.3892/ol.2019.10010. Epub 2019 Feb 4.
The current study aimed to develop multiple diagnosis models for colorectal cancer (CRC) based on data from The Cancer Genome Atlas database and analysis with artificial neural networks in order to enhance CRC diagnosis methods. A genetic algorithm and mean impact value were used to select genes to be used as numerical encoded parameters to reflect cancer metastasis or aggression. Back propagation and learning vector quantization neural networks were used to build four diagnosis models: Cancer/Normal, M0/M1, carcinoembryonic antigen (CEA) <5/≥5 and Clinical stage I-II/III-IV. The performance of each model was evaluated by predictive accuracy (ACC), the area under the receiver operating characteristic curve (AUC) and a 10-fold cross-validation test. The ACC and AUC of the Cancer/Normal, M0/M1, CEA and Clinical stage models were 100%, 1.000; 87.14%, 0.670; 100%, 1.000; and 100%, 1.000, respectively. The 10-fold cross-validation test of the ACC values and sensitivity for each test were 93.75-99.39%, 1.0000; 80.58-88.24%, 0.9286-1.0000; 67.21-92.31%, 0.7091-1.0000; and 59.13-68.85%, 0.6017-0.6585, respectively. The diagnosis models developed in the current study combined gene expression profiling data and artificial intelligence algorithms to create tools for improved diagnosis of CRC.
本研究旨在基于癌症基因组图谱数据库的数据并通过人工神经网络分析,开发多种用于结直肠癌(CRC)的诊断模型,以改进CRC诊断方法。使用遗传算法和平均影响值来选择用作数值编码参数的基因,以反映癌症转移或侵袭情况。采用反向传播和学习向量量化神经网络构建了四个诊断模型:癌组织/正常组织、M0/M1、癌胚抗原(CEA)<5/≥5以及临床分期I-II/III-IV。通过预测准确率(ACC)、受试者操作特征曲线下面积(AUC)和10倍交叉验证测试对每个模型的性能进行评估。癌组织/正常组织、M0/M1、CEA和临床分期模型的ACC和AUC分别为100%、1.000;87.14%、0.670;100%、1.000;以及100%、1.000。每个测试的ACC值的10倍交叉验证测试和敏感性分别为93.75 - 99.39%、1.0000;80.58 - 88.24%、0.9286 - 1.0000;67.21 - 92.31%、0.7091 - 1.0000;以及59.13 - 68.85%、0.6017 - 0.6585。本研究中开发的诊断模型结合了基因表达谱数据和人工智能算法,以创建用于改善CRC诊断的工具。