Seiwerth I, Jonen J, Rahne T, Lauenroth A, Hullar T E, Plontke S K, Schwesig R
Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Martin-Luther-Universität Halle-Wittenberg, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
Department für Orthopädie, Unfall- und Wiederherstellungschirurgie, Martin-Luther-Universität Halle-Wittenberg, Universitätsklinikum Halle (Saale), Halle (Saale), Deutschland.
HNO. 2020 May;68(5):344-351. doi: 10.1007/s00106-020-00845-w.
Postural regulation is based on complex interactions among postural subsystems. The auditory system too appears to have an influence on postural control.
The aim of this study was to measure the influence of auditory input on postural control and to gain a deeper understanding of the interactions between auditory input and postural subsystems including subjective aspects.
In 30 healthy normal-hearing subjects, postural regulation and stability was measured with the Interactive Balance System (IBS; Inc. neurodata GmbH, Wien, Österreich) in 8 test positions with noise (frontal presentation) and plugged without noise. The IBS is an electrophysiological measurement device that measures postural control at the product level (e.g., stability, weight distribution) and the mechanisms of postural subsystems at the process level based on frequency-oriented fast-Fourier analysis of force-time relation.
At the process level, we found a relevant reduction (η ≥ 0.10) of postural regulation with noise in the frequency bands F1 (visual and nigrostriatal system η = 0.122) and F2-4 (peripheral vestibular system η = 0.125). At the product level, the weight distribution index (WDI) parameter showed a relevant increase with noise (η = 0.159). No difference between the auditory conditions was found for postural stability (parameter: stability indicator, ST). Substantial interindividual variations in the subjective estimation of the influence of auditory inputs on stability were observed.
In this study, a shift in the activity of postural subsystems was observed with auditory input, while no difference was seen in ST. This leads to new insights into mechanisms of audiovestibular interaction.
姿势调节基于姿势子系统之间的复杂相互作用。听觉系统似乎也对姿势控制有影响。
本研究旨在测量听觉输入对姿势控制的影响,并更深入地了解听觉输入与姿势子系统之间的相互作用,包括主观方面。
在30名听力正常的健康受试者中,使用交互式平衡系统(IBS;奥地利维也纳neurodata GmbH公司)在8个测试位置测量姿势调节和稳定性,其中一些位置有噪声(正面呈现),一些位置耳塞堵塞无噪声。IBS是一种电生理测量设备,可以在产品层面测量姿势控制(例如稳定性、重量分布),并基于力-时间关系的频率导向快速傅里叶分析在过程层面测量姿势子系统的机制。
在过程层面,我们发现F1频段(视觉和黑质纹状体系统η = 0.122)和F2 - 4频段(外周前庭系统η = 0.125)有噪声时姿势调节有显著降低(η≥0.10)。在产品层面,重量分布指数(WDI)参数有噪声时显示出显著增加(η = 0.159)。姿势稳定性(参数:稳定性指标,ST)在听觉条件之间未发现差异。观察到听觉输入对稳定性影响的主观估计存在很大的个体差异。
在本研究中,观察到听觉输入时姿势子系统的活动发生了变化,而ST没有差异。这为视听前庭相互作用的机制带来了新的见解。