Suppr超能文献

沼泽红假单胞菌丙二酸降解的不连续途径。

A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris.

机构信息

Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.

Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.

出版信息

Appl Environ Microbiol. 2020 May 19;86(11). doi: 10.1128/AEM.00631-20.

Abstract

The purple nonsulfur phototrophic bacterium strain CGA009 uses the three-carbon dicarboxylic acid malonate as the sole carbon source under phototrophic conditions. However, this bacterium grows extremely slowly on this compound and does not have operons for the two pathways for malonate degradation that have been detected in other bacteria. Many bacteria grow on a spectrum of carbon sources, some of which are classified as poor growth substrates because they support low growth rates. This trait is rarely addressed in the literature, but slow growth is potentially useful in biotechnological applications where it is imperative for bacteria to divert cellular resources to value-added products rather than to growth. This prompted us to explore the genetic and physiological basis for the slow growth of with malonate as a carbon source. There are two unlinked genes annotated as encoding a malonyl coenzyme A (malonyl-CoA) synthetase (MatB) and a malonyl-CoA decarboxylase (MatA) in the genome of , which we verified as having the predicted functions. Additionally, two tripartite ATP-independent periplasmic transporters (TRAP systems) encoded by to and to were needed for optimal growth on malonate. Most of these genes were expressed constitutively during growth on several carbon sources, including malonate. Our data indicate that uses a piecemeal approach to growing on malonate. The data also raise the possibility that this bacterium will evolve to use malonate efficiently if confronted with an appropriate selection pressure. There is interest in understanding how bacteria metabolize malonate because this three-carbon dicarboxylic acid can serve as a building block in bioengineering applications to generate useful compounds that have an odd number of carbons. We found that the phototrophic bacterium grows extremely slowly on malonate. We identified two enzymes and two TRAP transporters involved in the uptake and metabolism of malonate, but some of these elements are apparently not very efficient. cells growing with malonate have the potential to be excellent biocatalysts, because cells would be able to divert cellular resources to the production of value-added compounds instead of using them to support rapid growth. In addition, our results suggest that is a candidate for directed evolution studies to improve growth on malonate and to observe the kinds of genetic adaptations that occur to make a metabolic pathway operate more efficiently.

摘要

紫色非硫光合细菌 CGA009 在光照条件下仅使用三碳二羧酸丙二酸盐作为碳源。然而,该细菌在这种化合物上生长非常缓慢,并且没有检测到其他细菌中丙二酸盐降解的两种途径的操纵子。许多细菌可以在一系列碳源上生长,其中一些被归类为生长不良的底物,因为它们支持的生长速率很低。这一特性在文献中很少被提及,但缓慢的生长在生物技术应用中可能是有用的,因为在这些应用中,细菌必须将细胞资源转移到增值产品上,而不是用于生长。这促使我们探索以丙二酸盐为碳源时 缓慢生长的遗传和生理基础。在 CGA009 的基因组中有两个未连接的基因注释为编码丙二酰辅酶 A(丙二酰-CoA)合成酶(MatB)和丙二酰-CoA 脱羧酶(MatA),我们验证了它们具有预测的功能。此外,丙二酸盐最佳生长需要由 编码到 和 编码到 的两个三联体 ATP 非依赖性周质转运蛋白(TRAP 系统)。在包括丙二酸盐在内的几种碳源生长过程中,这些基因大多数都是组成型表达的。我们的数据表明, 以零碎的方式在丙二酸盐上生长。这些数据还提出了一种可能性,即如果面临适当的选择压力,该细菌将进化为有效地利用丙二酸盐。人们对了解细菌如何代谢丙二酸盐感兴趣,因为这种三碳二羧酸可以作为生物工程应用中的构建块,用于生成具有奇数个碳原子的有用化合物。我们发现,光合细菌 在丙二酸盐上的生长速度非常缓慢。我们确定了两种参与丙二酸盐摄取和代谢的酶和两种 TRAP 转运蛋白,但其中一些元素显然效率不高。以丙二酸盐生长的 细胞有可能成为优秀的生物催化剂,因为细胞将能够将细胞资源转移到增值化合物的生产上,而不是将其用于支持快速生长。此外,我们的结果表明, 是定向进化研究的候选者,以提高丙二酸盐的生长速度,并观察发生的遗传适应,以使代谢途径更有效地运行。

相似文献

引用本文的文献

本文引用的文献

1
Genes essential for phototrophic growth by a purple alphaproteobacterium.紫细菌进行光合作用所必需的基因。
Environ Microbiol. 2017 Sep;19(9):3567-3578. doi: 10.1111/1462-2920.13852. Epub 2017 Jul 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验