Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 401147, Chongqing, P. R. China.
Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, 401147, Chongqing, P. R. China.
Sci Rep. 2020 Mar 27;10(1):5562. doi: 10.1038/s41598-020-62254-x.
Autophagy and NF-κB signaling are involving in the process of Particle Disease, which was caused by the particles released from friction interface of artificial joint, implant materials of particle reinforced composite, scaffolds for tissue engineering, or material for drug delivery. However, the biological interaction of different material particles and the mechanism of proteasome inhibitor, Bortezomib (BTZ), against Titanium (Ti) particle-induced Particle Disease remain unclear. In this study, we evaluated effect of nanosized Alumina (Al) particles and BTZ on reducing and treating the Ti particle-induced inflammatory reaction in MG-63 cells and mouse calvarial osteolysis model. We found that Al particles and BTZ could block apoptosis and NF- κB activation in osteoblasts in vitro and in a mouse model of calvarial resorption induced by Ti particles. We found that Al particles and BTZ attenuated the expression of inflammatory cytokines (IL-1β, IL-6, TNF-α). And Al prevented the IL-1β expression induced by Ti via attenuating the NF- κB activation β-TRCP and reducing the expression of Casepase-3. Expressions of autophagy marker LC3 was activated in Ti group, and reduced by Al and/not BTZ. Furthermore, the expressions of OPG were also higher in these groups than the Ti treated group. Collectively, nanosized Al could prevent autophagy and reduce the apoptosis, inflammatory and osteolysis induced by Ti particles. Our data offered a basic data for implant design when it was inevitable to use Ti as biomaterials, considering the outstanding mechanical propertie of Ti. What's more, proteasome inhibitor BTZ could be a potential therapy for wear particle-induced inflammation and osteogenic activity via regulating the activity of NF- κB signaling pathway.
自噬和 NF-κB 信号通路参与了由人工关节摩擦界面、颗粒增强复合材料的植入材料、组织工程支架或药物输送材料释放的颗粒引起的颗粒病的发生过程。然而,不同材料颗粒的生物学相互作用以及蛋白酶体抑制剂硼替佐米(BTZ)对钛(Ti)颗粒诱导的颗粒病的作用机制尚不清楚。在本研究中,我们评估了纳米氧化铝(Al)颗粒和 BTZ 对减少和治疗 Ti 颗粒诱导的 MG-63 细胞炎症反应和小鼠颅骨骨质溶解模型的影响。我们发现,Al 颗粒和 BTZ 可以阻止体外成骨细胞凋亡和 NF-κB 激活,并在 Ti 颗粒诱导的小鼠颅骨骨质吸收模型中发挥作用。我们发现,Al 颗粒和 BTZ 可下调炎症细胞因子(IL-1β、IL-6、TNF-α)的表达。并且 Al 通过抑制 NF-κB 激活β-TRCP 和减少 Caspase-3 的表达来抑制 Ti 诱导的 IL-1β表达。Ti 组自噬标记物 LC3 的表达被激活,并被 Al 和/或 BTZ 降低。此外,这些组的 OPG 表达也高于 Ti 处理组。总之,纳米 Al 可以预防 Ti 颗粒诱导的自噬和减少细胞凋亡、炎症和骨质溶解。当不可避免地使用 Ti 作为生物材料时,我们的数据为植入物设计提供了基本数据,考虑到 Ti 的出色机械性能。此外,蛋白酶体抑制剂 BTZ 可能通过调节 NF-κB 信号通路的活性成为一种治疗由磨损颗粒引起的炎症和成骨活性的潜在疗法。
Cell Commun Signal. 2024-2-15
Front Cell Dev Biol. 2023-3-24
J Nanobiotechnology. 2022-3-19
Oxid Med Cell Longev. 2021
Pharmaceutics. 2021-9-28
Part Fibre Toxicol. 2019-4-23
J Biomed Mater Res A. 2013-4-9
Immunol Rev. 2012-3