Suppr超能文献

通过具有最佳孔径尺寸的坚固铝基金属有机骨架材料分离单支链和双支链烷烃异构体。

Splitting Mono- and Dibranched Alkane Isomers by a Robust Aluminum-Based Metal-Organic Framework Material with Optimal Pore Dimensions.

作者信息

Yu Liang, Dong Xinglong, Gong Qihan, Acharya Shree Ram, Lin Yuhan, Wang Hao, Han Yu, Thonhauser Timo, Li Jing

机构信息

Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, People's Republic of China.

Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

出版信息

J Am Chem Soc. 2020 Apr 15;142(15):6925-6929. doi: 10.1021/jacs.0c01769. Epub 2020 Apr 1.

Abstract

The separation of alkanes with different degrees of branching, particularly mono- and dibranched isomers, represents a challenging yet important industrial process for the production of premium gasoline blending components with high octane number. We report here the separation of linear/monobranched and dibranched alkanes through complete molecular sieving by a robust aluminum-based MOF material, Al-bttotb (Hbttotb = 4,4',4″-(benzene-1,3,5-triyltris(oxy))tribenzoicacid). Single- and multicomponent adsorption experiments reveal that the material adsorbs linear and monobranched alkanes, but fully excludes their dibranched isomers. Adsorption sites of alkanes within the MOF channels have been identified by single-crystal X-ray diffraction studies, and the adsorption mechanism was explored through computational calculations and modeling. The highly selective adsorption of the MOF should be attributed to its optimal pore dimensions.

摘要

分离具有不同支化度的烷烃,特别是单支链和双支链异构体,对于生产具有高辛烷值的优质汽油调合组分而言,是一个具有挑战性但又很重要的工业过程。我们在此报告,通过一种坚固的铝基金属有机框架材料Al-bttotb(Hbttotb = 4,4',4″-(苯-1,3,5-三基三(氧))三苯甲酸)进行完全分子筛分,实现了直链/单支链和双支链烷烃的分离。单组分和多组分吸附实验表明,该材料吸附直链和单支链烷烃,但完全排除其双支链异构体。通过单晶X射线衍射研究确定了金属有机框架通道内烷烃的吸附位点,并通过计算和建模探索了吸附机理。该金属有机框架的高选择性吸附应归因于其最佳的孔尺寸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验