Suppr超能文献

学习型快速高效视频编码(HEVC)帧内编码

Learned Fast HEVC Intra Coding.

作者信息

Chen Zhibo, Shi Jun, Li Weiping

出版信息

IEEE Trans Image Process. 2020 Mar 30. doi: 10.1109/TIP.2020.2982832.

Abstract

In High Efficiency Video Coding (HEVC), excellent rate-distortion (RD) performance is achieved in part by having a flexible quadtree coding unit (CU) partition and a large number of intra-prediction modes. Such an excellent RD performance is achieved at the expense of much higher computational complexity. In this paper, we propose a learned fast HEVC intra coding (LFHI) framework taking into account the comprehensive factors of fast intra coding to reach an improved configurable tradeoff between coding performance and computational complexity. First, we design a low-complex shallow asymmetric-kernel CNN (AK-CNN) to efficiently extract the local directional texture features of each block for both fast CU partition and fast intra-mode decision. Second, we introduce the concept of the minimum number of RDO candidates (MNRC) into fast mode decision, which utilizes AK-CNN to predict the minimum number of best candidates for RDO calculation to further reduce the computation of intra-mode selection. Third, an evolution optimized threshold decision (EOTD) scheme is designed to achieve configurable complexity-efficiency tradeoffs. Finally, we propose an interpolation-based prediction scheme that allows for our framework to be generalized to all quantization parameters (QPs) without the need for training the network on each QP. The experimental results demonstrate that the LFHI framework has a high degree of parallelism and achieves a much better complexity-efficiency tradeoff, achieving up to 75.2% intra-mode encoding complexity reduction with negligible rate-distortion performance degradation, superior to the existing fast intra-coding schemes.

摘要

在高效视频编码(HEVC)中,通过灵活的四叉树编码单元(CU)划分和大量帧内预测模式,部分实现了出色的率失真(RD)性能。然而,如此出色的RD性能是以更高的计算复杂度为代价的。在本文中,我们提出了一种基于深度学习的快速HEVC帧内编码(LFHI)框架,该框架考虑了快速帧内编码的综合因素,以在编码性能和计算复杂度之间实现更好的可配置权衡。首先,我们设计了一个低复杂度的浅不对称内核卷积神经网络(AK-CNN),用于高效提取每个块的局部方向纹理特征,以实现快速CU划分和快速帧内模式决策。其次,我们将最小RDO候选数(MNRC)的概念引入快速模式决策中,利用AK-CNN预测RDO计算的最佳候选数的最小值,以进一步减少帧内模式选择的计算量。第三,设计了一种进化优化阈值决策(EOTD)方案,以实现可配置的复杂度-效率权衡。最后,我们提出了一种基于插值的预测方案,使我们的框架能够推广到所有量化参数(QP),而无需在每个QP上训练网络。实验结果表明,LFHI框架具有高度的并行性,并且在复杂度-效率权衡方面表现出色,在率失真性能下降可忽略不计的情况下,实现了高达75.2%的帧内模式编码复杂度降低,优于现有的快速帧内编码方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验