Dvorzhak Anton, Grantyn Rosemarie
Synaptic Dysfunction Group, Neuroscience Research Center, Charité - University Medicine.
Synaptic Dysfunction Group, Neuroscience Research Center, Charité - University Medicine;
J Vis Exp. 2020 Mar 11(157). doi: 10.3791/60113.
Synapses are highly compartmentalized functional units that operate independently on each other. In Huntington's disease (HD) and other neurodegenerative disorders, this independence might be compromised due to insufficient glutamate clearance and the resulting spill-in and spill-out effects. Altered astrocytic coverage of the presynaptic terminals and/or dendritic spines as well as a reduced size of glutamate transporter clusters at glutamate release sites have been implicated in the pathogenesis of diseases resulting in symptoms of dys-/hyperkinesia. However, the mechanisms leading to the dysfunction of glutamatergic synapses in HD are not well understood. Improving and applying synapse imaging we have obtained data shedding new light on the mechanisms impeding the initiation of movements. Here, we describe the principle elements of a relatively inexpensive approach to achieve single synapse resolution by using the new genetically encoded ultrafast glutamate sensor iGluu, wide-field optics, a scientific CMOS (sCMOS) camera, a 473 nm laser and a laser positioning system to evaluate the state of corticostriatal synapses in acute slices from age appropriate healthy or diseased mice. Glutamate transients were constructed from single or multiple pixels to obtain estimates of i) glutamate release based on the maximal elevation of the glutamate concentration [Glu] next to the active zone and ii) glutamate uptake as reflected in the time constant of decay (TauD) of the perisynaptic [Glu]. Differences in the resting bouton size and contrasting patterns of short-term plasticity served as criteria for the identification of corticostriatal terminals as belonging to the intratelencephalic (IT) or the pyramidal tract (PT) pathway. Using these methods, we discovered that in symptomatic HD mice ~40% of PT-type corticostriatal synapses exhibited insufficient glutamate clearance, suggesting that these synapses might be at risk to excitotoxic damage. The results underline the usefulness of TauD as a biomarker of dysfunctional synapses in Huntington mice with a hypokinetic phenotype.
突触是高度分隔的功能单元,彼此独立运作。在亨廷顿舞蹈病(HD)和其他神经退行性疾病中,由于谷氨酸清除不足以及由此产生的溢出和漏出效应,这种独立性可能会受到损害。突触前终末和/或树突棘的星形胶质细胞覆盖改变,以及谷氨酸释放位点处谷氨酸转运体簇的尺寸减小,与导致运动障碍/运动亢进症状的疾病发病机制有关。然而,HD中谷氨酸能突触功能障碍的机制尚不清楚。通过改进和应用突触成像技术,我们获得了一些数据,为阻碍运动起始的机制提供了新的线索。在这里,我们描述了一种相对廉价的方法的主要原理,该方法通过使用新的基因编码超快谷氨酸传感器iGluu、宽场光学系统、科学互补金属氧化物半导体(sCMOS)相机、473 nm激光和激光定位系统,来实现单突触分辨率,以评估来自年龄匹配的健康或患病小鼠急性脑片的皮质纹状体突触状态。谷氨酸瞬变由单个或多个像素构建而成,以获得以下估计值:i)基于活性区旁谷氨酸浓度[Glu]的最大升高来估计谷氨酸释放;ii)突触周围[Glu]衰减时间常数(TauD)所反映的谷氨酸摄取。静息突触小体大小的差异以及短期可塑性的对比模式作为识别属于脑内(IT)或锥体束(PT)通路的皮质纹状体终末的标准。使用这些方法,我们发现,在有症状的HD小鼠中,约40%的PT型皮质纹状体突触表现出谷氨酸清除不足,这表明这些突触可能有受到兴奋性毒性损伤的风险。这些结果强调了TauD作为亨廷顿舞蹈病低运动表型小鼠中功能失调突触生物标志物的有用性。