Suppr超能文献

用于PDM-64QAM光性能监测的迁移学习简化多任务深度神经网络

Transfer learning simplified multi-task deep neural network for PDM-64QAM optical performance monitoring.

作者信息

Cheng Yijun, Zhang Wenkai, Fu Songnian, Tang Ming, Liu Deming

出版信息

Opt Express. 2020 Mar 2;28(5):7607-7617. doi: 10.1364/OE.388491.

Abstract

We experimentally demonstrate a transfer learning (TL) simplified multi-task deep neural network (MT-DNN) for joint optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) from directly detected PDM-64QAM signals. First, we investigate the quality of amplitude histogram (AH) generation on the performance of OSNR monitoring and experimentally clarify the importance of higher electronic sampling rate in order to realize precise OSNR monitoring for high-order QAM format. Next, by implementing TL from simulation to experiment, when both 10Gbaud PDM-16QAM and PDM-64QAM signals are considered, the accuracy of MFI reaches 100% and the root-mean-square error (RMSE) of OSNR monitoring is 1.09dB over a range of 14-24dB and 23-34dB for PDM-16QAM and PDM-64QAM, respectively. Meanwhile, the used training samples and epochs can be substantially reduced by 24.5% and 44.4%, respectively. Since single photodetector (PD) and one TL simplified MT-DNN are used, the proposed optical performance monitoring (OPM) scheme with high cost performance can be applied for advanced modulation formats.

摘要

我们通过实验展示了一种迁移学习(TL)简化多任务深度神经网络(MT-DNN),用于从直接检测的偏振复用64正交幅度调制(PDM-64QAM)信号中联合进行光信噪比(OSNR)监测和调制格式识别(MFI)。首先,我们研究了幅度直方图(AH)生成质量对OSNR监测性能的影响,并通过实验阐明了更高电子采样率对于实现高阶QAM格式精确OSNR监测的重要性。接下来,通过从仿真到实验实施迁移学习,当同时考虑10G波特的PDM-16QAM和PDM-64QAM信号时,对于PDM-16QAM和PDM-64QAM,在14 - 24dB和23 - 34dB的范围内,MFI的准确率达到100%,OSNR监测的均方根误差(RMSE)分别为1.09dB。同时,所使用的训练样本和轮次可分别大幅减少24.5%和44.4%。由于使用了单光探测器(PD)和一个TL简化MT-DNN,所提出的具有高性价比的光性能监测(OPM)方案可应用于高级调制格式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验