Liu Ruina, Gu Yuexi, Shen Mingwang, Li Huan, Zhang Kai, Wang Qi, Wei Xin, Zhang Haohui, Wu Di, Yu Kai, Cai Wumin, Wang Gongji, Zhang Siruo, Sun Qinru, Huang Ping, Wang Zhenyuan
College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710061, China.
Environ Microbiol. 2020 Jun;22(6):2273-2291. doi: 10.1111/1462-2920.15000. Epub 2020 Apr 5.
Microbes play an essential role in the decomposition process but were poorly understood in their succession and behaviour. Previous researches have shown that microbes show predictable behaviour that starts at death and changes during the decomposition process. Research of such behaviour enhances the understanding of decomposition and benefits estimating the postmortem interval (PMI) in forensic investigations, which is critical but faces multiple challenges. In this study, we combined microbial community characterization, microbiome sequencing from different organs (i.e. brain, heart and cecum) and machine learning algorithms [random forest (RF), support vector machine (SVM) and artificial neural network (ANN)] to investigate microbial succession pattern during corpse decomposition and estimate PMI in a mouse corpse system. Microbial communities exhibited significant differences between the death point and advanced decay stages. Enterococcus faecalis, Anaerosalibacter bizertensis, Lactobacillus reuteri, and so forth were identified as the most informative species in the decomposition process. Furthermore, the ANN model combined with the postmortem microbial data set from the cecum, which was the best combination among all candidates, yielded a mean absolute error of 1.5 ± 0.8 h within 24-h decomposition and 14.5 ± 4.4 h within 15-day decomposition. This integrated model can serve as a reliable and accurate technology in PMI estimation.
微生物在分解过程中起着至关重要的作用,但其演替和行为却鲜为人知。先前的研究表明,微生物表现出可预测的行为,这种行为始于死亡并在分解过程中发生变化。对这种行为的研究有助于加深对分解的理解,并有利于在法医调查中估计死后间隔时间(PMI),这一过程至关重要但面临多重挑战。在本研究中,我们结合微生物群落特征分析、来自不同器官(即脑、心脏和盲肠)的微生物组测序以及机器学习算法[随机森林(RF)、支持向量机(SVM)和人工神经网络(ANN)],来研究小鼠尸体系统中尸体分解过程中的微生物演替模式并估计PMI。微生物群落在死亡点和高度腐烂阶段之间表现出显著差异。粪肠球菌、比塞特尔厌氧盐杆菌、罗伊氏乳杆菌等被确定为分解过程中最具信息价值的物种。此外,ANN模型与来自盲肠的死后微生物数据集相结合,这是所有候选组合中最佳的组合,在24小时分解内平均绝对误差为1.5±0.8小时,在15天分解内平均绝对误差为14.5±4.4小时。这种综合模型可作为PMI估计中一种可靠且准确的技术。