Department of Geology and Geophysics, Yale University, New Haven, Connecticut, USA.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Astrobiology. 2020 May;20(5):628-636. doi: 10.1089/ast.2019.2060. Epub 2020 Mar 31.
Earth's ocean-atmosphere system has undergone a dramatic but protracted increase in oxygen (O) abundance. This environmental transition ultimately paved the way for the rise of multicellular life and provides a blueprint for how a biosphere can transform a planetary surface. However, estimates of atmospheric oxygen levels for large intervals of Earth's history still vary by orders of magnitude-foremost for Earth's middle history. Historically, estimates of mid-Proterozoic (1.9-0.8 Ga) atmospheric oxygen levels are inferred based on the kinetics of reactions occurring in soils or in the oceans, rather than being directly tracked by atmospheric signatures. Rare oxygen isotope systematics-based on quantifying the rare oxygen isotope O in addition to the conventionally determined O and O-provide a means to track atmospheric isotopic signatures and thus potentially provide more direct estimates of atmospheric oxygen levels through time. Oxygen isotope signatures that deviate strongly from the expected mass-dependent relationship between O, O, and O develop during ozone formation, and these "mass-independent" signals can be transferred to the rock record during oxidation reactions in surface environments that involve atmospheric O. The magnitude of these signals is dependent upon O, CO, and the overall extent of biospheric productivity. Here, we use a stochastic approach to invert the mid-Proterozoic ΔO record for a new estimate of atmospheric O, leveraging explicit coupling of O and biospheric productivity in a biogeochemical Earth system model to refine the range of atmospheric O values that is consistent with a given observed ΔO. Using this approach, we find new evidence that atmospheric oxygen levels were less than ∼1% of the present atmospheric level (PAL) for at least some intervals of the Proterozoic Eon.
地球的海洋-大气系统经历了一次剧烈但漫长的氧气(O)丰度增加。这种环境转变最终为多细胞生命的崛起铺平了道路,并为生物圈如何改变行星表面提供了蓝图。然而,对于地球历史上的大部分时间,大气氧气水平的估计仍然存在数量级的差异——尤其是地球的中期历史。从历史上看,中元古代(1.9-0.8 Ga)大气氧气水平的估计是基于土壤或海洋中发生的反应动力学推断出来的,而不是通过大气特征直接跟踪。基于定量测定除常规测定的 O 和 O 之外的稀有氧同位素 O 的稀有氧同位素系统,提供了一种跟踪大气同位素特征的方法,从而有可能通过时间提供更直接的大气氧气水平估计。在臭氧形成过程中,偏离 O、O 和 O 之间预期的质量依赖关系的氧同位素特征会强烈发展,并且这些“质量独立”信号可以在涉及大气 O 的表面环境中的氧化反应过程中转移到岩石记录中。这些信号的幅度取决于 O、CO 和生物圈生产力的总体程度。在这里,我们使用随机方法反演中元古代 ΔO 记录,以获得大气 O 的新估计值,利用生物地球化学地球系统模型中 O 和生物圈生产力的明确耦合来细化与给定观察到的 ΔO 一致的大气 O 值范围。使用这种方法,我们发现了新的证据,表明大气氧气水平在至少一些元古代时期都低于目前大气水平(PAL)的 1%左右。