Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
Malar J. 2020 Mar 30;19(1):132. doi: 10.1186/s12936-020-03201-z.
During the erythrocytic cycle, Plasmodium falciparum malaria parasites express P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) that anchor the infected erythrocytes (IE) to the vascular lining of the host. The CIDRα1 domain of PfEMP1 is responsible for binding host endothelial protein C receptor (EPCR), and increasing evidence support that this interaction triggers severe malaria, accounting for the majority of malaria-related deaths. In high transmission regions, children develop immunity to severe malaria after the first few infections. This immunity is believed to be mediated by antibodies targeting and inhibiting PfEMP1, causing infected erythrocytes to circulate and be cleared in the spleen. The development of immunity to malaria coincides with acquisition of broad antibody reactivity across the CIDRα1 protein family. Altogether, this identifies CIDRα1 as an important vaccine target. However, the antigenic diversity of the CIDRα1 domain family is a challenge for vaccine development.
Immune responses in mice vaccinated with Virus-Like Particles (VLP) presenting CIDRα1 antigens were investigated. Antibody reactivity was tested to a panel of recombinant CIDRα1 domains, and the antibodies ability to inhibit EPCR binding by the recombinant CIDRα1 domains was tested in Luminex-based multiplex assays.
VLP-presented CIDRα1.4 antigens induced a rapid and strong IgG response capable of inhibiting EPCR-binding of multiple CIDRα1 domains mainly within the group A CIDRα1.4-7 subgroups.
The study observations mirror those from previous CIDRα1 vaccine studies using other vaccine constructs and platforms. This suggests that broad CIDRα1 antibody reactivity may be achieved through vaccination with a limited number of CIDRα1 variants. In addition, this study suggest that this may be achieved through vaccination with a human compatible VLP vaccine platform.
在红细胞周期中,恶性疟原虫表达恶性疟原虫红细胞膜蛋白 1(PfEMP1),将受感染的红细胞(IE)锚定到宿主血管内皮上。PfEMP1 的 CIDRα1 结构域负责结合宿主内皮蛋白 C 受体(EPCR),越来越多的证据支持这种相互作用引发严重疟疾,导致大多数与疟疾相关的死亡。在高传播地区,儿童在首次感染后的几次感染后会对严重疟疾产生免疫力。这种免疫被认为是通过针对和抑制 PfEMP1 的抗体介导的,导致受感染的红细胞在脾脏中循环和清除。对疟疾的免疫发展与对 CIDRα1 蛋白家族的广泛抗体反应性的获得相吻合。总的来说,这确定了 CIDRα1 是一个重要的疫苗靶标。然而,CIDRα1 结构域家族的抗原多样性是疫苗开发的一个挑战。
研究了用呈现 CIDRα1 抗原的病毒样颗粒(VLP)接种的小鼠的免疫反应。用一组重组 CIDRα1 结构域测试抗体反应性,并在基于 Luminex 的多重测定中测试抗体抑制重组 CIDRα1 结构域与 EPCR 结合的能力。
VLP 呈现的 CIDRα1.4 抗原诱导快速而强烈的 IgG 反应,能够抑制主要在 A 组 CIDRα1.4-7 亚组内的多个 CIDRα1 结构域的 EPCR 结合。
该研究观察结果与之前使用其他疫苗构建体和平台进行的 CIDRα1 疫苗研究结果相似。这表明通过接种有限数量的 CIDRα1 变体可以实现广泛的 CIDRα1 抗体反应性。此外,本研究表明,这可以通过接种与人相容的 VLP 疫苗平台来实现。