Suppr超能文献

阳极电化学剥离法制备的石墨烯的拉曼指纹图谱

Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation.

作者信息

Nagyte Vaiva, Kelly Daniel J, Felten Alexandre, Picardi Gennaro, Shin YuYoung, Alieva Adriana, Worsley Robyn E, Parvez Khaled, Dehm Simone, Krupke Ralph, Haigh Sarah J, Oikonomou Antonios, Pollard Andrew J, Casiraghi Cinzia

机构信息

Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom.

Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

Nano Lett. 2020 May 13;20(5):3411-3419. doi: 10.1021/acs.nanolett.0c00332. Epub 2020 Apr 9.

Abstract

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including postprocessing. Under specific conditions, the formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature, and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.

摘要

电化学剥离是大规模生产石墨烯最具前景的方法之一。然而,对其拉曼光谱的理解有限以及缺乏石墨烯的测量标准,严重限制了其工业应用。在这项工作中,我们对使用不同电解质和不同用量的溶剂类型制备的电化学剥离石墨烯的拉曼光谱进行了系统研究。我们证明,由于这种类型的石墨烯存在缺陷,无法从二维峰的形状中提取有关厚度的信息。此外,样品的缺陷数量和均匀性很大程度上取决于实验条件,包括后处理。在特定条件下,已观察到短导电反式聚乙炔链的形成。我们的拉曼分析为该领域提供了指导,即如何通过使拉曼光谱成为一种强大的计量工具,从电解质、温度和其他实验条件中获取有关缺陷的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验