Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
Prog Lipid Res. 2020 Apr;78:101028. doi: 10.1016/j.plipres.2020.101028. Epub 2020 Mar 29.
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
辅酶 A (CoA) 是哺乳动物细胞中主要的酰基载体,也是能量和脂质代谢中发挥关键作用的辅因子。CoA 及其硫酯(酰基辅酶 A)在不同水平上调节着多种代谢过程:作为底物、变构调节剂,以及通过组蛋白和其他非组蛋白的翻译后修饰。有证据表明,CoA 的合成和降解是受到调控的,从而使不同亚细胞区室的代谢具有灵活性。CoA 的降解通过独特的细胞内和细胞外途径进行,这些途径依赖于特定水解酶的活性。泛酰巯基乙胺酶专门将泛酰巯基乙胺水解为半胱胺和泛酸,这是 CoA 降解途径的最后一步。该反应将泛酸释放到血液中,使这种 CoA 前体可供细胞摄取和从头合成 CoA 利用。CoA 的细胞内降解依赖于特定的线粒体和过氧化物酶体 Nudix 水解酶。这些酶对一组酰基辅酶 A 也具有活性,在调节亚细胞(酰基)CoA 池和 CoA 依赖性代谢反应中起着关键作用。目前的证据表明,细胞外和细胞内(酰基)CoA 降解途径通过营养状态以协调和相反的方式进行调节,从而最大限度地改变总细胞内 CoA 水平,以支持肝脏等器官在进食和禁食状态之间的代谢转换。本综述的目的是更新这些途径对代谢、生理学和病理学调节的贡献,并强调仍有许多悬而未决的问题。