Suppr超能文献

药物代谢酶和药物转运体基因分型:精准医学时代生物标志物发现的工具。

DMET Genotyping: Tools for Biomarkers Discovery in the Era of Precision Medicine.

作者信息

Agapito Giuseppe, Settino Marzia, Scionti Francesca, Altomare Emanuela, Guzzi Pietro Hiram, Tassone Pierfrancesco, Tagliaferri Pierosandro, Cannataro Mario, Arbitrio Mariamena, Di Martino Maria Teresa

机构信息

Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.

Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.

出版信息

High Throughput. 2020 Mar 29;9(2):8. doi: 10.3390/ht9020008.

Abstract

The knowledge of genetic variants in genes involved in drug metabolism may be translated into reduction of adverse drug reactions, increase of efficacy, healthcare outcomes improvement and economic benefits. Many high-throughput tools are available for the genotyping of Single Nucleotide Polymorphisms (SNPs) known to be related to drugs and xenobiotics metabolism. DMET platform represents an example of SNPs panel to discover biomarkers correlated to efficacy or toxicity in common and rare diseases. The difficulty in analyzing the mole of information generated by DMET platform led to the development and implementation of algorithms and tools for statistical and data mining analysis. These softwares allow efficient handling of the omics data to validate the explorative SNPs identified by DMET assay and to correlate them with drug efficacy, toxicity and/or cancer susceptibility. In this review we present a suite of bioinformatic frameworks for the preprocessing and analysis of DMET-SNPs data. In particular, we introduce a workflow that uses the GenoMetric Query Language, a high-level query language specifically designed for genomics, able to query public datasets (such as ENCODE, TCGA, GENCODE annotation dataset, etc.) as well as to combine them with private datasets (e.g., output from Affymetrix® DMET Platform).

摘要

了解参与药物代谢的基因中的遗传变异,可能有助于减少药物不良反应、提高疗效、改善医疗保健结果并带来经济效益。有许多高通量工具可用于对已知与药物和外源性物质代谢相关的单核苷酸多态性(SNP)进行基因分型。DMET平台就是一个SNP面板的例子,用于发现与常见和罕见疾病的疗效或毒性相关的生物标志物。分析DMET平台产生的大量信息存在困难,这促使了用于统计和数据挖掘分析的算法和工具的开发与实施。这些软件能够有效地处理组学数据,以验证通过DMET检测鉴定出的探索性SNP,并将它们与药物疗效、毒性和/或癌症易感性相关联。在本综述中,我们介绍了一套用于DMET-SNP数据预处理和分析的生物信息学框架。特别是,我们引入了一个工作流程,该流程使用基因计量查询语言,这是一种专门为基因组学设计的高级查询语言,能够查询公共数据集(如ENCODE、TCGA、GENCODE注释数据集等),并将它们与私有数据集(例如,Affymetrix® DMET平台的输出)相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4773/7362183/95e316794fcb/high-throughput-09-00008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验