Wang Wen, Wang Jian, Chen Zhanfeng, Wang Ruijin, Lu Keqing, Sang Zhiqian, Ju Bingfeng
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China.
Micromachines (Basel). 2020 Mar 30;11(4):357. doi: 10.3390/mi11040357.
Because of fast frequency response, high stiffness, and displacement resolution, the piezoelectric actuators (PEAs) are widely used in micro/nano driving field. However, the hysteresis nonlinearity behavior of the PEAs affects seriously the further improvement of manufacturing accuracy. In this paper, we focus on the modeling of asymmetric hysteresis behavior and compensation of PEAs. First, a polynomial-modified Prandtl-Ishlinskii (PMPI) model is proposed for the asymmetric hysteresis behavior. Compared with classical Prandtl-Ishlinskii (PI) model, the PMPI model can be used to describe both symmetric and asymmetric hysteresis. Then, the congruency property of PMPI model is analyzed and verified. Next, based on the PMPI model, the inverse model (I-M) compensator is designed for hysteresis compensation. The stability of the I-M compensator is analyzed. Finally, the simulation and experiment are carried out to verify the accuracy of the PMPI model and the I-M compensator. The results implied that the PMPI model can effectively describe the asymmetric hysteresis, and the I-M compensator can well suppress the hysteresis characteristics of PEAs.
由于具有快速的频率响应、高刚度和位移分辨率,压电致动器(PEA)在微纳驱动领域得到了广泛应用。然而,压电致动器的滞后非线性行为严重影响了制造精度的进一步提高。本文重点研究压电致动器不对称滞后行为的建模与补偿。首先,针对不对称滞后行为提出了一种多项式修正的普朗特-伊斯林斯基(PMPI)模型。与经典的普朗特-伊斯林斯基(PI)模型相比,PMPI模型可用于描述对称和不对称滞后。然后,分析并验证了PMPI模型的一致性特性。接下来,基于PMPI模型设计了逆模型(I-M)补偿器用于滞后补偿,并分析了I-M补偿器的稳定性。最后,通过仿真和实验验证了PMPI模型和I-M补偿器的准确性。结果表明,PMPI模型能够有效描述不对称滞后,I-M补偿器能够很好地抑制压电致动器的滞后特性。