Li Jingbo, Liu Yu, Cao Wei, Chen Nan
School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
Dalton Trans. 2020 Apr 15;49(15):4956-4966. doi: 10.1039/d0dt00687d.
Ni(OH)2 has been widely investigated as a prospective electrode material because of its high theoretical capacitance and relatively low cost. However its synthesis usually needs a complex and lengthy process, and a binder is generally used for fabricating Ni(OH)2 based electrodes. In this work, a self-supporting binder-free β-Ni(OH)2@nickel foam (NF) integrated electrode was prepared by the in situ growth of β-Ni(OH)2 on NF using a rapid and facile approach. This approach consists of two processing steps: (1) the pre-treatment of NF with an acid and (2) the quick in situ electrochemical synthesis of β-Ni(OH)2 on the NF in the KOH electrolyte within half a minute under an applied voltage. The β-Ni(OH)2@NF integrated electrode possesses a three-dimensional network structure of nanosheet arrays and exhibits excellent electrochemical performance. Its areal capacity is 3.68 mA h cm-2 at a current density of 2 mA cm-2, and the capacity can retain 115.8% of its initial value even after 2000 cycles at a current density of 15 mA cm-2. Moreover, the as-assembled β-Ni(OH)2@NF//activated carbon (AC) asymmetric supercapacitor (ASC) exhibits a high energy density of 74.2 W h kg-1 with a power density of 776.9 W kg-1 and excellent cycling stability (89.9% retained after 10 000 cycles). This work provides an efficient, facile and economic method for fabricating Ni(OH)2 based integrated electrodes for high-performance supercapacitors.
氢氧化镍(Ni(OH)₂)因其高理论电容和相对较低的成本而被广泛研究作为一种潜在的电极材料。然而,其合成通常需要复杂且冗长的过程,并且通常使用粘合剂来制备基于氢氧化镍的电极。在这项工作中,通过一种快速简便的方法在泡沫镍(NF)上原位生长β-氢氧化镍(β-Ni(OH)₂)制备了一种自支撑无粘合剂的β-Ni(OH)₂@泡沫镍(NF)集成电极。该方法包括两个处理步骤:(1)用酸对NF进行预处理;(2)在施加电压下,在KOH电解液中于半分钟内在NF上快速原位电化学合成β-Ni(OH)₂。β-Ni(OH)₂@NF集成电极具有纳米片阵列的三维网络结构,并表现出优异的电化学性能。在电流密度为2 mA cm⁻²时,其面积容量为3.68 mA h cm⁻²,即使在电流密度为15 mA cm⁻²下循环2000次后,容量仍可保留其初始值的115.8%。此外,组装后的β-Ni(OH)₂@NF//活性炭(AC)不对称超级电容器(ASC)表现出74.2 W h kg⁻¹的高能量密度、776.9 W kg⁻¹的功率密度和优异的循环稳定性(在10000次循环后保留89.9%)。这项工作为制备用于高性能超级电容器的基于氢氧化镍的集成电极提供了一种高效、简便且经济的方法。