Suppr超能文献

揭示 种复合体中的两性霉素 B 耐药机制。

Unmasking the Amphotericin B Resistance Mechanisms in Species Complex.

机构信息

Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Bloco E - Subsolo sala 05, Rio de Janeiro 21941-902, Brazil.

Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365 - Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil.

出版信息

ACS Infect Dis. 2020 May 8;6(5):1273-1282. doi: 10.1021/acsinfecdis.0c00117. Epub 2020 Apr 14.

Abstract

The polyene amphotericin B (AMB) exerts a powerful and broad antifungal activity. AMB acts by (i) binding to ergosterol, leading to pore formation at the fungal plasma membrane with subsequent ion leakage, and (ii) inducing the intracellular accumulation of reactive oxygen species (ROS). Herein, we have deciphered the AMB resistance mechanisms in clinical isolates of complex (, , var. ) in comparison to other clinically relevant non- species. Membrane gas chromatography-mass spectrometry analysis revealed that the vast majority of sterols were composed of ergosterol pathway intermediates, evidencing the absence of AMB target. Supporting this data, species complex demonstrated poor membrane permeability after AMB treatment. Regarding the oxidative burst, AMB induced the formation of ROS in all species tested; however, this phenomenon was slightly seen in complex isolates. Our results indicated that these isolates displayed altered respiratory status, as revealed by their poor growth in nonfermented carbon sources, low consumption of oxygen, and derisive mitochondrial membrane potential. The use of specific inhibitors of mitochondrial respiratory chain (complex I-IV) revealed no effects on the yeast growth, highlighting the metabolic shift to fermentative pathway in strains. Also, complex proved to be highly resistant to oxidative burst agents, which can be correlated with a high activity of antioxidant enzymes. Our data demonstrated primary evidence suggesting that ergosterol content, mitochondrial function, and fungal redox homeostasis are involved in AMB fungicidal effects and might explain the resistance presented in this multidrug-resistant, emergent, and opportunistic fungal complex.

摘要

多烯类两性霉素 B (AMB) 具有强大而广泛的抗真菌活性。AMB 通过以下两种方式发挥作用:(i) 与麦角固醇结合,导致真菌质膜形成孔,随后离子渗漏;(ii) 诱导细胞内活性氧物质 (ROS) 的积累。在此,我们比较了 复合体(、、var. )与其他临床相关非- 物种的临床分离株,解析了 AMB 耐药机制。细胞膜气相色谱-质谱分析显示,绝大多数甾醇由麦角固醇途径中间体组成,证明不存在 AMB 靶标。支持这一数据的是, 物种复合体在 AMB 处理后表现出较差的膜通透性。关于氧化爆发,AMB 诱导所有测试物种形成 ROS;然而,在 复合体分离株中观察到这种现象稍弱。我们的结果表明,这些分离株显示出改变的呼吸状态,如在非发酵碳源中的生长不良、耗氧量低和线粒体膜电位改变所揭示的那样。线粒体呼吸链(复合物 I-IV)的特异性抑制剂的使用表明对酵母生长没有影响,突出了 菌株向发酵途径的代谢转变。此外, 复合体对氧化爆发剂表现出高度耐药性,这可能与抗氧化酶的高活性有关。我们的数据提供了初步证据,表明麦角固醇含量、线粒体功能和真菌氧化还原稳态参与 AMB 的杀菌作用,并可能解释这种多药耐药、新兴和机会性真菌复合体中存在的耐药性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验