Chauhan Anshu, Carolus Hans, Sofras Dimitrios, Kumar Mohit, Kumar Praveen, Nair Remya, Narayanan Aswathy, Yadav Kusum, Ali Basharat, Biriukov Vladislav, Saini Amandeep, Leaves Ian, Vergauwen Rudy, Romero Celia Lobo, Malavia-Jones Dhara, Singh Ashutosh, Banerjee Atanu, Rudramurthy Shivaprakash M, Chakrabarti Arunaloke, Mondal Alok K, Gaur Naseem A, Sanyal Kaustuv, Rybak Jeffrey M, Gabaldón Toni, Van Dijck Patrick, Gow Neil A R, Prasad Rajendra
Amity Institute of Biotechnology, Amity University Gurugram, Gurgaon, Haryana, India.
Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
Mol Microbiol. 2025 Jun 4. doi: 10.1111/mmi.15379.
Clinical isolates of Candida auris show a high prevalence of resistance to Amphotericin B (AmB)-an uncommon trait in most Candida species. Alterations in ergosterol biosynthesis can contribute to acquired AmB resistance in C. auris laboratory strains but are rarely seen in clinical isolates. In this study, we experimentally evolved two drug-susceptible Clade II isolates of C. auris to develop AmB resistance. The evolved strains displayed a four to eight fold increase in MIC compared to the parental cells. We analyzed changes in their karyotype, genome, lipidome, and transcriptome associated with this acquired resistance. In one lineage, AOX2 was upregulated, and its deletion reversed the AmB resistance phenotype. The aox2Δ mutant also failed to evolve AmB resistance under experimental conditions. In the same lineage, restoring the UPC2 and RTG3 mutations to the wild-type allele restored AmB susceptibility. In another lineage, the ergosterol and sphingolipid pathways were observed to play a critical role, and upregulation of the ERG genes elevated the total sterol content, while significant downregulation of HSX11 (glucosylceramide synthase) resulted in lower levels of glucosylceramides. To our knowledge, this study is the first to show that AmB resistance in C. auris can be acquired through mechanisms both dependent on or independent of sterol content modulation, highlighting Aox2 and Upc2 as key regulators of amphotericin resistance.
耳念珠菌临床分离株对两性霉素B(AmB)耐药的发生率很高,这在大多数念珠菌属中是不常见的特征。麦角固醇生物合成的改变可导致耳念珠菌实验室菌株获得性AmB耐药,但在临床分离株中很少见。在本研究中,我们通过实验使两株对药物敏感的耳念珠菌进化出对AmB的耐药性。进化后的菌株与亲代细胞相比,MIC增加了4至8倍。我们分析了与这种获得性耐药相关的核型、基因组、脂质组和转录组的变化。在一个谱系中,AOX2上调,其缺失逆转了AmB耐药表型。aox2Δ突变体在实验条件下也未能进化出对AmB的耐药性。在同一谱系中,将UPC2和RTG3突变恢复为野生型等位基因可恢复对AmB的敏感性。在另一个谱系中,观察到麦角固醇和鞘脂途径起关键作用,ERG基因的上调提高了总固醇含量,而HSX11(葡糖神经酰胺合酶)的显著下调导致葡糖神经酰胺水平降低。据我们所知,本研究首次表明耳念珠菌对AmB的耐药性可通过依赖或不依赖于固醇含量调节的机制获得,突出了Aox2和Upc2作为两性霉素耐药的关键调节因子。