Suppr超能文献

模拟铸造厂:自动化和 FAIR 分子建模。

Simulation Foundry: Automated and F.A.I.R. Molecular Modeling.

机构信息

Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.

出版信息

J Chem Inf Model. 2020 Apr 27;60(4):1922-1927. doi: 10.1021/acs.jcim.0c00018. Epub 2020 Apr 14.

Abstract

The Simulation Foundry (SF) is a modular workflow for the automated creation of molecular modeling (MM) data. MM allows for the reliable prediction of the microscopic and macroscopic properties of multicomponent systems from first principles. The SF makes MM repeatable, replicable, and findable, accessible, interoperable, and reusable (F.A.I.R.). The SF uses a standardized data structure and file naming convention, allowing for replication on different supercomputers and re-entrancy. We focus on keeping the SF simple by basing it on scripting languages that are widely used by the MM community (bash, Python) and making it reusable and re-editable. The SF was developed to assist expert users in performing parameter studies of multicomponent systems by high throughput molecular dynamics simulations. The usability of the SF is demonstrated by simulations of thermophysical properties of binary mixtures. A standardized data exchange format enables the integration of simulated data with data from experiments. The SF also provides a complete documentation of how the results were obtained, thus assigning provenance. Increasing computational power facilitates the intensification of the simulation process and requires automation and modularity. The SF provides a community platform on which to integrate new methods and create data that is reproducible and transparent (https://fairdomhub.org/studies/639/snapshots/1, https://fairdomhub.org/studies/639/snapshots/2).

摘要

模拟铸造厂(SF)是一个用于自动创建分子建模(MM)数据的模块化工作流程。MM 允许从第一原理可靠地预测多组分系统的微观和宏观性质。SF 使 MM 具有可重复性、可复制性、可发现性、可访问性、互操作性和可重用性(F.A.I.R.)。SF 使用标准化的数据结构和文件命名约定,允许在不同的超级计算机上复制和重新进入。我们专注于通过基于 MM 社区广泛使用的脚本语言(bash、Python)使 SF 保持简单,并使其具有可重用性和可编辑性。SF 是为了帮助专家用户通过高通量分子动力学模拟对多组分系统进行参数研究而开发的。通过模拟二元混合物的热物理性质来证明 SF 的可用性。标准化的数据交换格式使模拟数据与实验数据能够集成。SF 还提供了如何获得结果的完整文档,从而分配出处。计算能力的提高促进了模拟过程的强化,需要自动化和模块化。SF 提供了一个社区平台,可在该平台上集成新方法并创建可重复和透明的数据(https://fairdomhub.org/studies/639/snapshots/1,https://fairdomhub.org/studies/639/snapshots/2)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验