Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
Center for Lung Regenerative Medicine.
Am J Respir Crit Care Med. 2020 Jul 1;202(1):100-111. doi: 10.1164/rccm.201906-1232OC.
: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.: Newborn mice were exposed to 75% O for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with or cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.
: 新生儿重症监护的进步极大地提高了早产儿的存活率,但早产儿的长期并发症,包括支气管肺发育不良 (BPD),导致生命后期的死亡率和发病率。虽然 VEGF(血管内皮生长因子)改善了啮齿动物 BPD 模型中的肺结构和功能,但 VEGF 治疗的严重副作用阻止了其在 BPD 患者中的使用。: 为了测试纳米颗粒递送促血管生成转录因子 FOXM1(叉头盒 M1)或 FOXF1(叉头盒 F1)是否可以改善新生鼠高氧损伤后的肺结构和功能,FOXM1 和 FOXF1 都是 VEGF 的下游靶标。: 新生小鼠在生命的前 7 天暴露于 75% O2 中,然后返回室内空气环境。在生后第 2 天,静脉内注射含有非整合表达质粒的聚乙基亚胺-(5)十四酸/聚乙二醇-油酸/胆固醇纳米颗粒,该质粒含有 或 cDNA。使用共聚焦显微镜、流式细胞术和 flexiVent 小动物呼吸机评估纳米颗粒对肺结构和功能的影响。: 纳米颗粒有效地靶向肺泡区的内皮细胞和成纤维细胞。纳米颗粒递送 FOXM1 或 FOXF1 并不能保护内皮细胞免受高氧引起的凋亡,但在损伤后增加了内皮细胞的增殖和肺血管生成。FOXM1 和 FOXF1 改善了弹性纤维组织,减少了肺泡简化,并在成年小鼠中保持了肺功能。: 纳米颗粒递送 FOXM1 或 FOXF1 可刺激新生鼠高氧损伤后肺血管生成和肺泡化。递送促血管生成转录因子有望成为治疗早产儿 BPD 的一种方法。