Kunig Anette M, Balasubramaniam Vivek, Markham Neil E, Morgan Danielle, Montgomery Greg, Grover Theresa R, Abman Steven H
Pediatric Heart Lung Center, University of Colorado Health Science Center, The Children's Hospital, Denver, CO, USA.
Am J Physiol Lung Cell Mol Physiol. 2005 Oct;289(4):L529-35. doi: 10.1152/ajplung.00336.2004. Epub 2005 May 20.
VEGF signaling inhibition decreases alveolar and vessel growth in the developing lung, suggesting that impaired VEGF signaling may contribute to decreased lung growth in bronchopulmonary dysplasia (BPD). Whether VEGF treatment improves lung structure in experimental models of BPD is unknown. The objective was to determine whether VEGF treatment enhances alveolarization in infant rats after hyperoxia. Two-day-old Sprague-Dawley rats were placed into hyperoxia or room air (RA) for 12 days. At 14 days, rats received daily treatment with rhVEGF-165 or saline. On day 22, rats were killed. Tissue was collected. Morphometrics was assessed by radial alveolar counts (RAC), mean linear intercepts (MLI), and skeletonization. Compared with RA controls, hyperoxia decreased RAC (6.1 +/- 0.4 vs. 11.3 +/- 0.4, P < 0.0001), increased MLI (59.2 +/- 1.8 vs. 44.0 +/- 0.8, P < 0.0001), decreased nodal point density (447 +/- 14 vs. 503 +/- 12, P < 0.0004), and decreased vessel density (11.7 +/- 0.3 vs. 18.9 +/- 0.3, P < 0.001), which persisted despite RA recovery. Compared with hyperoxic controls, rhVEGF treatment after hyperoxia increased RAC (11.8 +/- 0.5, P < 0.0001), decreased MLI (42.2 +/- 1.2, P < 0.0001), increased nodal point density (502 +/- 7, P < 0.0005), and increased vessel density (23.2 +/- 0.4, P < 0.001). Exposure of neonatal rats to hyperoxia impairs alveolarization and vessel density, which persists despite RA recovery. rhVEGF treatment during recovery enhanced vessel growth and alveolarization. We speculate that lung structure abnormalities after hyperoxia may be partly due to impaired VEGF signaling.
血管内皮生长因子(VEGF)信号传导抑制会降低发育中肺脏的肺泡和血管生长,这表明VEGF信号传导受损可能导致支气管肺发育不良(BPD)时肺生长减缓。VEGF治疗是否能改善BPD实验模型中的肺结构尚不清楚。目的是确定VEGF治疗是否能增强高氧暴露后幼鼠的肺泡化。将2日龄的Sprague-Dawley大鼠置于高氧环境或室内空气(RA)中12天。在第14天,大鼠每天接受重组人VEGF-165或生理盐水治疗。在第22天,处死大鼠并收集组织。通过放射状肺泡计数(RAC)、平均线性截距(MLI)和骨架化评估形态学指标。与RA对照组相比,高氧环境降低了RAC(6.1±0.4对11.3±0.4,P<0.0001),增加了MLI(59.2±1.8对44.0±0.8,P<0.0001),降低了节点密度(447±14对503±12,P<0.0004),并降低了血管密度(11.7±0.3对18.9±0.3,P<0.001),尽管恢复到RA环境,这些变化仍然持续存在。与高氧对照组相比,高氧暴露后rhVEGF治疗增加了RAC(11.8±0.5,P<0.0001),降低了MLI(42.2±1.2,P<0.0001),增加了节点密度(502±7,P<0.0005),并增加了血管密度(23.2±0.4,P<0.001)。新生大鼠暴露于高氧环境会损害肺泡化和血管密度,尽管恢复到RA环境,这种损害仍然持续存在。恢复期间的rhVEGF治疗增强了血管生长和肺泡化。我们推测高氧暴露后肺结构异常可能部分归因于VEGF信号传导受损。