Suppr超能文献

初级纤毛通过解聚微管抑制成骨细胞分化和矿化,充当微重力传感器。

Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization.

机构信息

Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China.

Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

出版信息

Bone. 2020 Jul;136:115346. doi: 10.1016/j.bone.2020.115346. Epub 2020 Mar 30.

Abstract

Microgravity-induced bone deterioration is a major challenge in long-term spaceflights since the underlying mechanisms remain elusive. Previously, we reported that primary cilia of osteoblasts gradually disappeared in microgravity conditions, and cilia abrogation was necessary for the inhibition of osteogenesis induced by microgravity. However, the precise roles of primary cilia have not been fully elucidated. Here, we report that microgravity depolymerizes the microtubule network of rat calvarial osteoblasts (ROBs) reversibly but has no effect on the architecture of actin filaments. Preventing primary ciliogenesis by chloral hydrate or a small interfering RNA sequence (siRNA) targeting intraflagellar transport protein 88 (IFT88) effectively relieves microgravity-induced microtubule depolymerization, whereas the stabilization of microtubules using pharmacological approaches cannot prevent the disappearance of primary cilia in microgravity conditions. Furthermore, quantification of the number of microtubules emerging from the ciliary base body shows that microgravity significantly decreases the number of basal microtubules, which is dependent on the existence of primary cilia. Finally, microgravity-induced repression of the differentiation, maturation, and mineralization of ROBs is abrogated by the stabilization of cytoplasmic microtubules. Taken together, these data suggest that primary cilia-dependent depolymerization of microtubules is responsible for the inhibition of osteogenesis induced by microgravity. Our study provides a new perspective regarding the mechanism of microgravity-induced bone loss, supporting the previously established role of primary cilia as a sensor in bone metabolism.

摘要

微重力导致的骨骼恶化是长期太空飞行中的一个主要挑战,因为其潜在机制仍难以捉摸。之前,我们曾报道过,成骨细胞中的初级纤毛在微重力条件下逐渐消失,而纤毛的缺失对于微重力诱导的成骨作用抑制是必要的。然而,初级纤毛的确切作用尚未完全阐明。在这里,我们报告称,微重力可使大鼠颅骨成骨细胞(ROB)中的微管网络发生可逆解聚,但对肌动蛋白丝的结构没有影响。通过水合氯醛或针对鞭毛内运输蛋白 88(IFT88)的小干扰 RNA 序列(siRNA)来阻止初级纤毛发生,可以有效地缓解微重力诱导的微管解聚,而使用药理学方法稳定微管并不能防止微重力条件下初级纤毛的消失。此外,对从纤毛基体中伸出的微管数量进行定量分析表明,微重力显著减少了基底微管的数量,这依赖于初级纤毛的存在。最后,通过稳定细胞质微管,可以消除微重力诱导的 ROB 分化、成熟和矿化的抑制作用。总之,这些数据表明,初级纤毛依赖性微管解聚是微重力抑制成骨作用的原因。我们的研究为微重力诱导的骨质流失机制提供了新的视角,支持了初级纤毛作为骨代谢传感器的先前确立作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验