Suppr超能文献

混合治疗最小模型:消除或最小化癌症的一些策略。

A mixed therapy minimal model: Some strategies for eradication or minimization of cancer.

机构信息

Research Scholar Department of Applied Mathematics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India 202002.

Professor (Rtd.), Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, UP, India.

出版信息

Comput Methods Programs Biomed. 2020 Aug;192:105433. doi: 10.1016/j.cmpb.2020.105433. Epub 2020 Mar 3.

Abstract

BACKGROUND AND OBJECTIVE

In most of the cancer therapeutic models separate equations for consumption of drugs are used, we however use parameters m and s to see the effect of chemotherapy and immunotherapy respectively. The main objective of this theoretical study is to develop strategies for eradication or minimization of cancer.

METHODS

Linearization method to study the local stability of model equilibria.

RESULTS

The results obtained in this study provide thresholds on m-fraction of cancer cells killed by chemotherapy and s-fraction of immune cells stimulated by immunotherapy.

CONCLUSION

The model considered relates to immune-cancer-normal cell interactions in post vascularization process. The study aims to develop strategies for complete eradication or minimization of cancer in terms of model parameters. This paper presents a minimal immuno-chemotherapeutic cancer model by describing interacting dynamics of cancer, immune and normal cells in a system of three ordinary differential equations. The source of the immune cells is considered outside the sytem given by a constant influx rate, s. The minimality of the model lies in not considering a separate equation for the dynamics of the drug but its overall killing effect on the cancer cells represented by a parameter, m. Thus the parameter m relates to chemotherapy and s to immunotherapy. The analysis of the model yields thresholds on these parameters for therapeutic strategies which guarantee either eradication or minimization of cancer from a patient's body.

摘要

背景与目的

在大多数癌症治疗模型中,分别使用药物消耗的方程,然而我们使用参数 m 和 s 分别观察化疗和免疫疗法的效果。本理论研究的主要目的是制定消除或最小化癌症的策略。

方法

线性化方法研究模型平衡点的局部稳定性。

结果

本研究获得的结果提供了化疗杀死的癌细胞 m 分数和免疫疗法刺激的免疫细胞 s 分数的阈值。

结论

所考虑的模型涉及血管化后过程中免疫-癌症-正常细胞的相互作用。该研究旨在根据模型参数制定完全消除或最小化癌症的策略。本文通过描述癌症、免疫和正常细胞在三个常微分方程系统中的相互作用动力学,提出了一个最小的免疫化疗癌症模型。免疫细胞的来源被认为是系统外的,通过一个恒定的流入率 s 来提供。模型的最小化在于不考虑药物动力学的单独方程,而是用一个参数 m 来表示其对癌细胞的总体杀伤效果。因此,参数 m 与化疗有关,s 与免疫疗法有关。模型分析得出了这些参数的阈值,这些阈值为保证从患者体内消除或最小化癌症的治疗策略提供了依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验