Suppr超能文献

在一种RNA毒性小鼠模型中,采用靶向DMPK 3'UTR RNA中非CUG序列的反义寡核苷酸疗法进行全身治疗。

Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA.

作者信息

Yadava Ramesh S, Yu Qing, Mandal Mahua, Rigo Frank, Bennett C Frank, Mahadevan Mani S

机构信息

Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.

Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA.

出版信息

Hum Mol Genet. 2020 Jun 3;29(9):1440-1453. doi: 10.1093/hmg/ddaa060.

Abstract

Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.

摘要

1型强直性肌营养不良症(DM1)是最常见的成人肌肉萎缩症,是一种常染色体显性疾病,由肌强直性营养不良蛋白激酶(DMPK)基因3'非翻译区(3'UTR)内的(CTG)n序列扩增引起。突变的DMPK mRNA具有毒性,存在于核RNA病灶中,并与大量RNA剪接缺陷相关。DM1的主要特征是肌强直和心脏传导异常。利用转基因小鼠,我们已经证明突变型DMPK 3'UTR的表达足以引发DM1的这些特征。在此,我们利用这些小鼠,对一种针对DMPK 3'UTR内非CUG序列的反义寡核苷酸(ASO)(ISIS 486178)进行了全身治疗研究。心脏和骨骼肌中的RNA病灶和DMPK 3'UTR mRNA水平均降低。这与骨骼肌和心肌中几种剪接缺陷的改善相关。治疗减轻了肌强直,这与Clcn1表达增加相关。此外,功能测试显示跑步机跑步能力有所改善。值得注意的是,我们证明ASO治疗逆转了心脏传导异常,这与心脏中Gja5(连接蛋白40)表达的恢复相关。这是首次证明靶向DMPK 3'UTR内非CUG序列的ASO对肌强直和心脏传导缺陷等关键DM1表型有益。我们的数据还首次表明,ASO可能是治疗DM1心脏病变的可行选择。

相似文献

2
Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy.
Nucleic Acid Ther. 2020 Apr;30(2):80-93. doi: 10.1089/nat.2019.0811. Epub 2019 Dec 23.
3
Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
Nucleic Acids Res. 2015 Mar 31;43(6):3318-31. doi: 10.1093/nar/gkv163. Epub 2015 Mar 9.
4
Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.
PLoS One. 2015 Sep 4;10(9):e0137620. doi: 10.1371/journal.pone.0137620. eCollection 2015.
8
Targeting nuclear RNA for in vivo correction of myotonic dystrophy.
Nature. 2012 Aug 2;488(7409):111-5. doi: 10.1038/nature11362.
9
Antisense oligonucleotides as a potential treatment for brain deficits observed in myotonic dystrophy type 1.
Gene Ther. 2022 Dec;29(12):698-709. doi: 10.1038/s41434-022-00316-7. Epub 2022 Jan 25.
10
MBNL1 overexpression is not sufficient to rescue the phenotypes in a mouse model of RNA toxicity.
Hum Mol Genet. 2019 Jul 15;28(14):2330-2338. doi: 10.1093/hmg/ddz065.

引用本文的文献

2
Functions of the Muscleblind-like protein family and their role in disease.
Cell Commun Signal. 2025 Feb 18;23(1):97. doi: 10.1186/s12964-025-02102-5.
3
Myotonic dystrophies: an update on clinical features, molecular mechanisms, management, and gene therapy.
Neurol Sci. 2025 Apr;46(4):1599-1616. doi: 10.1007/s10072-024-07826-9. Epub 2024 Dec 7.
4
Studying the Effect of MBNL1 and MBNL2 Loss in Skeletal Muscle Regeneration.
Int J Mol Sci. 2024 Feb 26;25(5):2687. doi: 10.3390/ijms25052687.
5
Promising AAV.U7snRNAs vectors targeting improve DM1 hallmarks in patient-derived cell lines.
Front Cell Dev Biol. 2023 Jun 15;11:1181040. doi: 10.3389/fcell.2023.1181040. eCollection 2023.
6
RNA Transcript Diversity in Neuromuscular Research.
J Neuromuscul Dis. 2023;10(4):473-482. doi: 10.3233/JND-221601.
7
Application of Antisense Conjugates for the Treatment of Myotonic Dystrophy Type 1.
Int J Mol Sci. 2023 Jan 31;24(3):2697. doi: 10.3390/ijms24032697.
9
Peptide-Conjugated PMOs for the Treatment of Myotonic Dystrophy.
Methods Mol Biol. 2023;2587:209-237. doi: 10.1007/978-1-0716-2772-3_13.
10

本文引用的文献

1
Prevalence of Left Ventricular Systolic Dysfunction in Myotonic Dystrophy Type 1: A Systematic Review.
J Card Fail. 2020 Oct;26(10):849-856. doi: 10.1016/j.cardfail.2019.07.548. Epub 2019 Aug 12.
2
Cardiovascular manifestations of myotonic dystrophy.
Trends Cardiovasc Med. 2020 May;30(4):232-238. doi: 10.1016/j.tcm.2019.06.001. Epub 2019 Jun 13.
5
MBNL1 overexpression is not sufficient to rescue the phenotypes in a mouse model of RNA toxicity.
Hum Mol Genet. 2019 Jul 15;28(14):2330-2338. doi: 10.1093/hmg/ddz065.
7
Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy.
Front Neurol. 2018 Jul 10;9:519. doi: 10.3389/fneur.2018.00519. eCollection 2018.
8
Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1.
Front Neurol. 2018 May 18;9:349. doi: 10.3389/fneur.2018.00349. eCollection 2018.
9
Mechanisms of skeletal muscle wasting in a mouse model for myotonic dystrophy type 1.
Hum Mol Genet. 2018 Aug 15;27(16):2789-2804. doi: 10.1093/hmg/ddy192.
10
Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation.
JACC Clin Electrophysiol. 2017 May;3(5):425-435. doi: 10.1016/j.jacep.2017.03.002. Epub 2017 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验