Kumar Giri Sajal, Saalmann Ulf, Rost Jan M
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Phys Rev Lett. 2020 Mar 20;124(11):113201. doi: 10.1103/PhysRevLett.124.113201.
Photoelectron spectra obtained with intense pulses generated by free-electron lasers through self-amplified spontaneous emission are intrinsically noisy and vary from shot to shot. We extract the purified spectrum, corresponding to a Fourier-limited pulse, with the help of a deep neural network. It is trained on a huge number of spectra, which was made possible by an extremely efficient propagation of the Schrödinger equation with synthetic Hamilton matrices and random realizations of fluctuating pulses. We show that the trained network is sufficiently generic such that it can purify atomic or molecular spectra, dominated by resonant two- or three-photon ionization, nonlinear processes which are particularly sensitive to pulse fluctuations. This is possible without training on those systems.
通过自由电子激光经自放大自发辐射产生的强脉冲所获得的光电子能谱本质上是有噪声的,并且每次测量都会有所不同。我们借助深度神经网络提取对应于傅里叶极限脉冲的纯化光谱。该网络在大量光谱上进行训练,这得益于使用合成哈密顿矩阵和波动脉冲的随机实现对薛定谔方程进行的极其高效的传播。我们表明,经过训练的网络具有足够的通用性,以至于它能够纯化由共振双光子或三光子电离主导的原子或分子光谱,这些非线性过程对脉冲波动特别敏感。即便没有针对这些系统进行训练,这也是可行的。