Suppr超能文献

基于从脑胶质母细胞瘤基因组数据中选择的多个靶点的分子对接对化学文库进行表型筛选。

Phenotypic Screening of Chemical Libraries Enriched by Molecular Docking to Multiple Targets Selected from Glioblastoma Genomic Data.

机构信息

Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.

Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, Indiana 46202, United States.

出版信息

ACS Chem Biol. 2020 Jun 19;15(6):1424-1444. doi: 10.1021/acschembio.0c00078. Epub 2020 May 21.

Abstract

Like most solid tumors, glioblastoma multiforme (GBM) harbors multiple overexpressed and mutated genes that affect several signaling pathways. Suppressing tumor growth of solid tumors like GBM without toxicity may be achieved by small molecules that selectively modulate a collection of targets across different signaling pathways, also known as selective polypharmacology. Phenotypic screening can be an effective method to uncover such compounds, but the lack of approaches to create focused libraries tailored to tumor targets has limited its impact. Here, we create rational libraries for phenotypic screening by structure-based molecular docking chemical libraries to GBM-specific targets identified using the tumor's RNA sequence and mutation data along with cellular protein-protein interaction data. Screening this enriched library of 47 candidates led to several active compounds, including (IPR-2025), which (i) inhibited cell viability of low-passage patient-derived GBM spheroids with single-digit micromolar IC values that are substantially better than standard-of-care temozolomide, (ii) blocked tube-formation of endothelial cells in Matrigel with submicromolar IC values, and (iii) had no effect on primary hematopoietic CD34 progenitor spheroids or astrocyte cell viability. RNA sequencing provided the potential mechanism of action for , and mass spectrometry-based thermal proteome profiling confirmed that the compound engages multiple targets. The ability of to inhibit GBM phenotypes without affecting normal cell viability suggests that our screening approach may hold promise for generating lead compounds with selective polypharmacology for the development of treatments of incurable diseases like GBM.

摘要

与大多数实体瘤一样,多形性胶质母细胞瘤 (GBM) 存在多个过度表达和突变的基因,这些基因影响着多个信号通路。通过选择性调节不同信号通路中一系列靶标的小分子,而不产生毒性,可能抑制 GBM 等实体瘤的肿瘤生长,这种方法也称为选择性多药理学。表型筛选可能是发现此类化合物的有效方法,但缺乏针对肿瘤靶标创建有针对性文库的方法,限制了其影响。在这里,我们使用肿瘤的 RNA 序列和突变数据以及细胞蛋白-蛋白相互作用数据,通过基于结构的分子对接化学文库,为表型筛选创建合理的文库,针对特定于 GBM 的靶点。筛选这个 47 个候选化合物的丰富文库,得到了几种活性化合物,包括 (IPR-2025),它 (i) 以单位数微摩尔 IC 值抑制低传代患者来源的 GBM 球体的细胞活力,比标准治疗药物替莫唑胺要好得多,(ii) 以亚微摩尔 IC 值阻断 Matrigel 中内皮细胞的管形成,以及 (iii) 对原代造血 CD34 祖细胞球体或星形胶质细胞活力没有影响。RNA 测序为 提供了潜在的作用机制,基于质谱的热蛋白质组学分析证实了该化合物与多个靶标结合。化合物抑制 GBM 表型而不影响正常细胞活力的能力表明,我们的筛选方法可能有希望为治疗不可治愈的疾病(如 GBM)开发具有选择性多药理学的先导化合物。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验