Okabe Shigeo
Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
Microscopy (Oxf). 2020 Jul 30;69(4):196-213. doi: 10.1093/jmicro/dfaa016.
Dendritic spines are small protrusions that receive most of the excitatory inputs to the pyramidal neurons in the neocortex and the hippocampus. Excitatory neural circuits in the neocortex and hippocampus are important for experience-dependent changes in brain functions, including postnatal sensory refinement and memory formation. Several lines of evidence indicate that synaptic efficacy is correlated with spine size and structure. Hence, precise and accurate measurement of spine morphology is important for evaluation of neural circuit function and plasticity. Recent advances in light microscopy and image analysis techniques have opened the way toward a full description of spine nanostructure. In addition, large datasets of spine nanostructure can be effectively analyzed using machine learning techniques and other mathematical approaches, and recent advances in super-resolution imaging allow researchers to analyze spine structure at an unprecedented level of precision. This review summarizes computational methods that can effectively identify, segment and quantitate dendritic spines in either 2D or 3D imaging. Nanoscale analysis of spine structure and dynamics, combined with new mathematical approaches, will facilitate our understanding of spine functions in physiological and pathological conditions.
树突棘是小的突起,接收新皮层和海马体中锥体神经元的大部分兴奋性输入。新皮层和海马体中的兴奋性神经回路对于大脑功能中依赖经验的变化很重要,包括出生后感觉精细化和记忆形成。多条证据表明,突触效能与棘的大小和结构相关。因此,精确测量棘的形态对于评估神经回路功能和可塑性很重要。光学显微镜和图像分析技术的最新进展为全面描述棘的纳米结构开辟了道路。此外,使用机器学习技术和其他数学方法可以有效地分析棘纳米结构的大型数据集,超分辨率成像的最新进展使研究人员能够以前所未有的精度水平分析棘结构。本综述总结了可有效识别、分割和量化二维或三维成像中树突棘的计算方法。对棘结构和动力学的纳米级分析,结合新的数学方法,将有助于我们理解生理和病理条件下棘的功能。